Tự ôn toán với các công thức tính đạo hàm giới hạn và vi phân - 3
lượt xem 26
download
Tham khảo tài liệu 'tự ôn toán với các công thức tính đạo hàm giới hạn và vi phân - 3', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tự ôn toán với các công thức tính đạo hàm giới hạn và vi phân - 3
- CỰC TRỊ Định nghĩa: Hàm số f được gọi là đạt cực đại (cực tiểu) tại x0 nếu tồn tại một lân cận của x0 sao cho f(x) f(x0) (f(x) f(x0)). Chiều biến thiên của hàm số: Định lý: Cho f khả vi trong (a,b): 1. Nếu f’(x) > 0 với mọi x (a,b) thì f tăng. 2. Nếu f’(x) < 0 với mọi x (a,b) thì f giảm. Điều kiện cần của cực trị: Định lý Fermat: Nếu hàm số đạt cực trị tại điểm x = x0 và có đạo hàm tại điểm đó thì f’(x0) = 0. Ví dụ: Hàm số y = x3, f’(0) = 0 nhưng tại x = 0 hàm số không đạt cực trị. Hàm số y = x đạt cực tiểu tại x = 0 nhưng f’(0) không tồn tại. Định nghĩa: Các điểm thoả một trong các điều kiện sau thì được gọi chung là điểm tới hạn của f: a) Không tồn tại f’(x) b) f’(x) = 0 Định nghĩa: Các điểm thoả điều kiện sau f’(x) = 0 được gọi là điểm dừng của f.
- Điều kiện đủ của cực trị: Định lý: Giả sử f khả vi trong (a,b) chứa điểm x0 a) Nếu x vượt qua x0 mà f’(x) đổi dấu từ dương sang âm thì f(x) đạt cực đại tại x0. b) Nếu x vượt qua x0 mà f’(x) đổi dấu từ âm sang dương thì f(x) đạt cực tiểu tại x0. c) Nếu x vượt qua x0 mà f’(x) không đổi dấu thì f(x) không đạt cực trị tại x0. Định lý: Giả sử f(x) có đạo hàm cấp 2 liên tục ở lân cận điểm x0 và f’(x) = 0. a) Nếu f”(x0) > 0 thì f(x) đạt cực tiểu. b) Nếu f”(x0) < 0 thì f(x) đạt cực đại. Giá trị lớn nhất bé nhất của hàm số trên một đoạn: 1. Tính giá của f tại các điểm tới hạn và tại điểm hai đầu mút. 2. Giá trị lớn nhất (nhỏ nhất) trong các giá trị đ ược tính trên là giá trị lớn nhất (nhỏ nhất cần tìm). Ví dụ: tìm giá trị lớn nhất và bé nhất của hàm số: f(x) = x3 – 3x2 +1 trên đoạn [-1/2, 4] Biến kinh tế: Sản lượng Q Quantity Lượng cung QS Quantity Supplied Lượng cầu QD Quantity Demanded
- Giá cả P Price C Cost Chi phí Tổng chi phí TC Total Cost R Revenue Doanh thu Tổng doanh thu TR Total Revenue Lợi nhuận Pr Profit Tư bản K Capital Lao động L Labour Định phí FC Fix Cost Biến phí VC Variable Cost Hàm số kinh tế: Hàm sản xuất • : Q = f(K,L) • Hàm doanh thu : TR = PQ • Hàm chi phí : TC = f(Q) Hàm lợi nhuận : = TR - TC • Ví dụ: Một quán bún bình dân, hãy tính mỗi ngày bán bao nhiêu tô thì có lời với giá bán 5.000đ/tô và chi phí như sau: Thuê mặt bằng, 50.000đ/ngày điện nước
- 300đ/tô Bún Gia vị 200đ/tô Thịt bò, heo 2.000đ/tô 500đ/tô Nhân viên Ý nghĩa đạo hàm trong kinh tế: Sản lượng biên MQ: (Marginal quantity) Đo lường sự thay đổi của sản • lượng khi tăng lao động hay vốn lên một đơn vị. Q5 L Ví dụ: Hãy tìm sản lượng biên của một doanh nghiệp và cho nhận xét khi • L=100 cho bởi hàm sản xuất sau: • Chi phí biên MC: (Marginal Cost) Hàm chi phí: TC = TC(Q) MC là đại lượng đo lường sự thay đổi của chi phí khi sản lượng tăng lên một đơn vị. Ví dụ: Tìm MC và MC là bao nhiêu khi Q = 50 và cho nhận xét. • TC = 0,0001Q3 – 0,02Q2 + 5Q + 100 • Doanh thu biên MR: (Marginal Revenue) Hàm doanh thu: TR = PQ
- Nếu: Q do thị trường quyết định, giá do doanh nghiệp quyết định th ì MR là • đại lượng đo lường sự thay đổi của doanh thu khi sản l ượng tăng thêm 1 đơn vị. Nếu: Q do doanh nghiệp quyết định, giá do thị trường quyết định thì MR là • đại lượng đo lường sự thay đổi của doanh thu khi giá tăng thêm 1 đơn vị. Ví dụ: Một sản phẩm trên thị trường có hàm cầu là: • Q = 1.000 – 14P Tìm MR khi p = 40 và p = 30 • Lợi nhuận biên MP: (Marginal Profit) Hàm lợi nhuận: = TR – TC = PQ – (FC + VC(Q)) Lợi nhuận biên là đại lượng đo lường sự thay đổi của lợi nhuận khi giá hay sản lượng tăng thêm 1 đơn vị • Tối đa hóa lợi nhuận: Hàm chi phí: TC = TC(x) Hàm cầu: x = QD = f(P) Giả sử thị trường độc quyền: Hàm lợi nhuận: = TR – TC = Px – TC(x) d d (TR TC ) dx 0 0 dx 2 2 d 0 d (TR TC ) 0 dx 2 dx 2
- Ví dụ: Một công ty độc quyền, phòng kinh doanh cung cấp thông tin: • Định phí: FC = 600 Biến phí: VC = 1/8 x2 + 6x Hàm cầu: x = -7/8 P + 100 Hãy tìm sản lượng để doanh nghiệp đạt lợi nhuận tốt đa.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tự ôn toán với các công thức tính đạo hàm giới hạn và vi phân - 1
6 p | 551 | 78
-
SKKN: Thiết kế bài tập ôn tập với Hot Potatoes
20 p | 325 | 73
-
Tự ôn toán với các công thức tính đạo hàm giới hạn và vi phân - 2
6 p | 502 | 56
-
Bài giảng Ôn tập về phép cộng và phép trừ - Toán 2 - GV.Lê Văn Hải
13 p | 205 | 25
-
Đề kiểm tra KSCL Toán - Tiểu học Long Phước 1 - Kèm Đ.án
16 p | 212 | 15
-
Hướng dẫn giải bài 1,2,3,4,5 trang 175 SGK Toán 5
3 p | 113 | 11
-
Bài giảng môn Toán lớp 2 sách Cánh diều - Bài 48: Ôn tập về phép cộng, phép trừ trong phạm vi 100
10 p | 144 | 9
-
Giáo án Toán 2 chương 4 bài 1: Ôn tập về phép cộng và phép trừ
7 p | 133 | 8
-
Đề thi thử môn toán lớp 10 trường chuyên số 19
2 p | 83 | 5
-
Bài giảng Toán lớp 4: Ôn tập về các phép tính với số tự nhiên
9 p | 21 | 5
-
Bài giảng môn Toán lớp 2 sách Cánh diều - Bài 2: Ôn tập về phép cộng, phép trừ (không nhớ) trong phạm vi 100
16 p | 41 | 4
-
Nội dung ôn tập học kì 2 môn Toán lớp 6 năm 2023-2024 - Trường THCS Thành Công
9 p | 10 | 4
-
Bài giảng môn Đại số lớp 9: Ôn tập chương 1 (Tiết 1)
12 p | 26 | 3
-
Đề thi học kì 2 môn Toán lớp 7 năm 2022-2023 có đáp án - Trường THCS Sương Nguyệt Anh
7 p | 14 | 3
-
Bài giảng môn Toán lớp 2 sách Cánh diều - Bài 47: Ôn tập về phép cộng, phép trừ trong phạm vi 20
11 p | 78 | 2
-
Giải bài tập Ôn tập các số đến 100 (tiếp theo) SGK Toán 1
3 p | 69 | 2
-
Giáo án điện tử môn Toán lớp 3 - Bài: Ôn tập bốn phép tính trong phạm vi 100000
11 p | 33 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn