Boundary Value Problems
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon.
Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system
Boundary Value Problems 2011, 2011:54
doi:10.1186/1687-2770-2011-54
Zaihong Jiang (jzhong@zjnu.cn) Jishan Fan (fanjishan@njfu.com.cn)
ISSN 1687-2770
Article type Research
Submission date
18 October 2011
Acceptance date
22 December 2011
Publication date
22 December 2011
Article URL http://www.boundaryvalueproblems.com/content/2011/1/54
This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below).
For information about publishing your research in Boundary Value Problems go to
http://www.boundaryvalueproblems.com/authors/instructions/
For information about other SpringerOpen publications go to
http://www.springeropen.com
© 2011 Jiang and Fan ; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system
Zaihong Jiang∗1 and Jishan Fan2 1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China 2Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
∗Corresponding author: jzhong@zjnu.cn Email address:
fanjishan@njfu.com.cn
Abstract
This article studies the vanishing heat conductivity limit for the 2D Cahn- Hilliard-boussinesq system in a bounded domain with non-slip boundary condi- tion. The result has been proved globally in time. 2010 MSC: 35Q30; 76D03; 76D05; 76D07. Keywords: Cahn–Hilliard–Boussinesq; inviscid limit; non-slip boundary con- dition.
1
Introduction
Let Ω ⊆ R2 be a bounded, simply connected domain with smooth boundary ∂Ω, and n is the unit outward normal vector to ∂Ω. We consider the following Cahn-Hilliard-
1
Boussinesq system in Ω × (0, ∞) [1]:
(1.1)
∂tu + (u · ∇)u + ∇π − ∆u = µ∇φ + θe2, div u = 0, (1.2)
(1.3)
(1.4)
∂tθ + u · ∇θ = (cid:178)∆θ, ∂tφ + u · ∇φ = ∆µ, −∆φ + f (cid:48)(φ) = µ, (1.5)
u = 0, θ = 0, = = 0 on ∂Ω × (0, ∞), (1.6) ∂φ ∂n ∂µ ∂n (1.7) (u, θ, φ)(x, 0) = (u0, θ0, φ0)(x), x ∈ Ω,
where u, π, θ and φ denote unknown velocity field, pressure scalar, temperature of the fluid and the order parameter, respectively. (cid:178) > 0 is the heat conductivity coefficient and e2 := (0, 1)t. µ is a chemical potential and f (φ) := 1 4 (φ2 − 1)2 is the double well potential.
∞,∞). Here ˙B0
. = curlu ∈ L1(0, T ; ˙B0
∂n = ∂µ0
∂n = 0
0 ∩ H 2, φ0 ∈ H 4, div u0 = 0 in Ω and ∂φ0 Theorem 1.1. Let (u0, θ0) ∈ H 1 on ∂Ω. Then, there exists a positive constant C independent of (cid:178) such that
When φ = 0, (1.1), (1.2) and (1.3) is the well-known Boussinesq system. In [2] Zhou and Fan proved a regularity criterion ω ∞,∞) for the 3D Boussinesq system with partial viscosity. Later, in [3] Zhou and Fan studied the Cauchy problem of certain Boussinesq−α equations in n dimensions with n = 2 or 3. We establish regularity for the solution under ∇u ∈ L1(0, T ; ˙B0 ∞,∞ denotes the homogeneous Besov space. Chae [4] studied the vanishing viscosity limit (cid:178) → 0 when Ω = R2. The aim of this article is to prove a similar result. We will prove that
(1.8) (cid:107)u(cid:178)(cid:107)L∞(0,T ;H 2) ≤ C, (cid:107)θ(cid:178)(cid:107)L∞(0,T ;H 2) ≤ C, (cid:107)φ(cid:178)(cid:107)L∞(0,T ;H 4) ≤ C, (cid:107)∂t(u(cid:178), θ(cid:178), φ(cid:178))(cid:107)L2(0,T ;L2) ≤ C,
for any T > 0, which implies
(1.9) (u(cid:178), θ(cid:178), φ(cid:178)) → (u, θ, φ) strongly in L2(0, T ; H 1) when (cid:178) → 0.
Here, (u, θ, φ) is the solution of the problem (1.1)–(1.7) with (cid:178) = 0.
2 Proof of Theorem 1.1
Since (1.9) follows easily from (1.8) by the Aubin-Lions compactness principle, we only need to prove the a priori estimates (1.8). From now on, we will drop the subscript (cid:178) and throughout this section C will be a constant independent of (cid:178).
First, by the maximum principle, it follows from (1.2), (1.3), and (1.6) that
(2.1) (cid:107)θ(cid:107)L∞(0,T ;L∞) ≤ (cid:107)θ0(cid:107)L∞ ≤ C.
2
Testing (1.3) by θ, using (1.2) and (1.6), we see that
(cid:90) (cid:90)
θ2dx + (cid:178) |∇θ|2dx = 0, 1 2 d dt
whence √ (2.2) (cid:178)(cid:107)θ(cid:107)L2(0,T ;H 1) ≤ C.
Testing (1.1) and (1.4) by u and µ, respectively, using (1.2), (1.6), (2.1), and
summing up the result, we find that
(cid:90) (cid:90)
u2 + |∇φ|2 + f (φ)dx + |∇u|2 + |∇µ|2dx 1 2 1 2 d dt (cid:90)
= θe2udx ≤ (cid:107)θ(cid:107)L2(cid:107)u(cid:107)L2 ≤ C(cid:107)u(cid:107)L2,
which gives
(2.3)
(2.4)
(2.5) (cid:107)φ(cid:107)L∞(0,T ;H 1) ≤ C, (cid:107)u(cid:107)L∞(0,T ;L2) + (cid:107)u(cid:107)L2(0,T ;H 1) ≤ C, (cid:107)∇µ(cid:107)L2(0,T ;L2) ≤ C.
Testing (1.4) by φ, using (1.2), (1.5) and (1.6), we infer that
(cid:90) (cid:90) (cid:90)
φ2dx + |∆φ|2dx = (φ3 − φ)∆φdx 1 2 d dt (cid:90) (cid:90) (cid:90)
φ∆φdx ≤ − φ∆φdx = −3 (cid:90) φ2|∇φ|2dx − (cid:90)
|∆φ|2dx + φ2dx, ≤ 1 2 1 2
which leads to
(2.6) (cid:107)φ(cid:107)L2(0,T ;H 2) ≤ C.
We will use the following Gagliardo-Nirenberg inequality:
L∞ ≤ C(cid:107)φ(cid:107)L6(cid:107)φ(cid:107)H 2.
(cid:107)φ(cid:107)2 (2.7)
3
It follows from (2.6), (2.7), (2.5), (2.3) and (1.5) that
(cid:90) (cid:90) T |∇∆φ|2dxdt
0 (cid:90) T
(cid:90)
0
=
0
0
(cid:90) |∇(f (cid:48)(φ) − µ)|2dxdt (cid:90) T (cid:90) (cid:90) T ≤ C |∇µ|2dxdt + C |∇(φ3 − φ)|2dxdt
0
(cid:90) (cid:90) T ≤ C + C
L∞dt
L∞(0,T ;L2)
0
φ4|∇φ|2dxdt (cid:90) T ≤ C + C(cid:107)∇φ(cid:107)2 (cid:107)φ(cid:107)4
L6(cid:107)φ(cid:107)2
0
H 2dt (cid:90) T
(cid:90) T ≤ C + C (cid:107)φ(cid:107)2
H 2dt ≤ C,
L∞(0,T ;H 1)
0
(cid:107)φ(cid:107)2 ≤ C + C(cid:107)φ(cid:107)2 (2.8)
which yields
(2.9)
(2.10)
(2.11) (cid:107)φ(cid:107)L2(0,T ;H 3) ≤ C, (cid:107)φ(cid:107)L4(0,T ;L∞) ≤ C, (cid:107)∇φ(cid:107)L2(0,T ;L∞) ≤ C.
Testing (1.4) by ∆2φ, using (1.5), (2.4), (2.3), (2.10) and (2.11), we derive
(cid:90) (cid:90)
|∆φ|2dx + |∆2φ|2dx 1 2 d dt (cid:90) (cid:90)
= − u · ∇φ · ∆2φdx + ∆(φ3 − φ) · ∆2φdx
≤ (cid:107)u(cid:107)L2(cid:107)∇φ(cid:107)L∞(cid:107)∆2φ(cid:107)L2 + (cid:107)∆(φ3 − φ)(cid:107)L2(cid:107)∆2φ(cid:107)L2 ≤ C(cid:107)∇φ(cid:107)L∞(cid:107)∆2φ(cid:107)L2
L∞(cid:107)∆φ(cid:107)L2 + (cid:107)φ(cid:107)L∞(cid:107)∇φ(cid:107)L∞(cid:107)∇φ(cid:107)L2 + (cid:107)∆φ(cid:107)L2)(cid:107)∆2φ(cid:107)L2
+C((cid:107)φ(cid:107)2
≤ C(cid:107)∇φ(cid:107)L∞(cid:107)∆2φ(cid:107)L2
L∞ + C(cid:107)φ(cid:107)4
L∞(cid:107)∆φ(cid:107)2 L2
≤ (cid:107)∆2φ(cid:107)2
L∞(cid:107)∆φ(cid:107)L2 + (cid:107)φ(cid:107)H 2(cid:107)∇φ(cid:107)L∞ + (cid:107)∆φ(cid:107)L2)(cid:107)∆2φ(cid:107)L2 L2 + C(cid:107)∇φ(cid:107)2 L∞(cid:107)φ(cid:107)2
L2,
H 2 + C(cid:107)∆φ(cid:107)2
+C((cid:107)φ(cid:107)2 1 2 +C(cid:107)∇φ(cid:107)2
which implies
(2.12) (cid:107)φ(cid:107)L∞(0,T ;H 2) + (cid:107)φ(cid:107)L2(0,T ;H 4) ≤ C.
4
Testing (1.1) by −∆u + ∇π, using (1.2), (1.6), (2.12), (2.1) and (2.4), we reach
(cid:90) (cid:90)
|∇u|2dx + (−∆u + ∇π)2dx d dt 1 2 (cid:90)
L2 )(cid:107) − ∆u + ∇π(cid:107)L2
= (µ∇φ + θe2 − u · ∇u)(−∆u + ∇π)dx
L∞ + C + C(cid:107)∇u(cid:107)4
L2 (cid:107)∆u(cid:107)1/2 L2,
(cid:107) − ∆u + ∇π(cid:107)2 ≤ C(cid:107)∇φ(cid:107)2 ≤ ((cid:107)µ(cid:107)L2(cid:107)∇φ(cid:107)L∞ + (cid:107)θ(cid:107)L2 + (cid:107)u(cid:107)L4(cid:107)∇u(cid:107)L4)(cid:107) − ∆u + ∇π(cid:107)L2 L2 · (cid:107)∇u(cid:107)1/2 L2 (cid:107)∇u(cid:107)1/2 ≤ C((cid:107)∇φ(cid:107)L∞ + 1 + (cid:107)u(cid:107)1/2 1 L2 + 2
which yields
(2.13) (cid:107)u(cid:107)L∞(0,T ;H 1) + (cid:107)u(cid:107)L2(0,T ;H 2) ≤ C.
L4 ≤ C(cid:107)u(cid:107)L2(cid:107)∇u(cid:107)L2,
Here, we have used the Gagliardo-Nirenberg inequalities:
L4 ≤ C(cid:107)∇u(cid:107)L2(cid:107)u(cid:107)H 2,
(cid:107)u(cid:107)2 (cid:107)∇u(cid:107)2
and the H 2-theory of the Stokes system:
(2.14) (cid:107)u(cid:107)H 2 + (cid:107)π(cid:107)H 1 ≤ C(cid:107) − ∆u + ∇π(cid:107)L2.
Similarly to (2.13), we have
(2.15) (cid:107)∂tu(cid:107)L2(0,T ;L2) ≤ C.
(1.1), (1.2), (1.6) and (1.7) can be rewritten as
in Ω × (0, ∞),
∂tu − ∆u + ∇π = g := µ∇φ + θe2 − u · ∇u, u = 0, on ∂Ω × (0, ∞), u(x, 0) = u0(x).
Using (2.12), (2.1), (2.13), and the regularity theory of Stokes system, we have
(cid:107)∂tu(cid:107)L2(0,T ;Lp) + (cid:107)u(cid:107)L2(0,T ;W 2,p) ≤ C(cid:107)g(cid:107)L2(0,T ;Lp) ≤ C(cid:107)µ(cid:107)L2(0,T ;L∞)(cid:107)∇φ(cid:107)L∞(0,T ;Lp) + C(cid:107)θ(cid:107)L∞(0,T ;L∞)
(2.16) +C(cid:107)u(cid:107)L∞(0,T ;L2p)(cid:107)∇u(cid:107)L2(0,T ;L2p) ≤ C,
for any 2 < p < ∞. (2.16) gives
(2.17) (cid:107)∇u(cid:107)L2(0,T ;L∞) ≤ C.
It follows from (1.3) and (1.6) that
∆θ = 0 on ∂Ω × (0, ∞). (2.18)
5
Applying ∆ to (1.3), testing by ∆θ, using (1.2), (1.6), (2.16), (2.17) and (2.18), we
obtain (cid:90) (cid:90)
|∆θ|2dx + (cid:178) |∇∆θ|2dx 1 2 d dt (cid:90)
= − (∆(u · ∇θ) − u∇∆θ)∆θdx
L2,
≤ C((cid:107)∆u(cid:107)L4(cid:107)∇θ(cid:107)L4 + (cid:107)∇u(cid:107)L∞(cid:107)∆θ(cid:107)L2)(cid:107)∆θ(cid:107)L2 ≤ C((cid:107)∆u(cid:107)L4 + (cid:107)∇u(cid:107)L∞)(cid:107)∆θ(cid:107)2
which implies √ (2.19) (cid:107)θ(cid:107)L∞(0,T ;H 2) + (cid:178)(cid:107)θ(cid:107)L2(0,T ;H 3) ≤ C.
It follows from (1.3), (1.6), (2.19) and (2.13) that
(2.20) (cid:107)∂tθ(cid:107)L∞(0,T ;L2) ≤ C.
Taking ∂t to (1.4) and (1.5), testing by ∂tφ, using (1.2), (1.6), (2.12), and (2.15), we have (cid:90) (cid:90)
|∂tφ|2dx + |∆∂tφ|2dx 1 2 d dt (cid:90) (cid:90)
= − ∂tu · ∇φ · ∂tφdx + ∆(3φ2∂tφ − ∂tφ) · ∂tφdx (cid:90) (cid:90)
= − ∂tu · ∇φ · ∂tφdx + (3φ2∂tφ − ∂tφ)∆∂tφdx
L∞ + 1)(cid:107)∂tφ(cid:107)L2(cid:107)∆∂tφ(cid:107)L2
≤ (cid:107)∂tu(cid:107)L2(cid:107)∇φ(cid:107)L∞(cid:107)∂tφ(cid:107)L2 + ((cid:107)3φ(cid:107)2
L2 + C(cid:107)∂tφ(cid:107)2
L2,
(cid:107)∆∂tφ(cid:107)2 ≤ (cid:107)∂tu(cid:107)L2(cid:107)∇φ(cid:107)L∞(cid:107)∂tφ(cid:107)L2 + 1 2
which gives
(2.21) (cid:107)∂tφ(cid:107)L∞(0,T ;L2) + (cid:107)∂tφ(cid:107)L2(0,T ;H 2) ≤ C.
By the regularity theory of elliptic equation, it follows from (1.4), (1.5), (1.6),
(2.21), (2.13) and (2.12) that
(cid:107)φ(cid:107)L∞(0,T ;H 4) ≤ C(cid:107)∆φ(cid:107)L∞(0,T ;H 2) ≤ C(cid:107)µ − f (cid:48)(φ)(cid:107)L∞(0,T ;H 2)
≤ C(cid:107)µ(cid:107)L∞(0,T ;H 2) + C(cid:107)f (cid:48)(φ)(cid:107)L∞(0,T ;H 2) ≤ C(cid:107)∆µ(cid:107)L∞(0,T ;L2) + C(cid:107)f (cid:48)(φ)(cid:107)L∞(0,T ;H 2) ≤ C(cid:107)∂tφ + u · ∇φ(cid:107)L∞(0,T ;L2) + C(cid:107)f (cid:48)(φ)(cid:107)L∞(0,T ;H 2) ≤ C(cid:107)∂tφ(cid:107)L∞(0,T ;L2) + C(cid:107)u(cid:107)L∞(0,T ;L4)(cid:107)∇φ(cid:107)L∞(0,T ;L4)
(2.22) +C(cid:107)f (cid:48)(φ)(cid:107)L∞(0,T ;H 2) ≤ C.
6
Taking ∂t to (1.1), testing by ∂tu, using (1.2), (1.6), (2.17), (2.22), (2.21) and (1.5), we conclude that (cid:90) (cid:90)
|∂tu|2dx + |∇∂tu|2dx 1 2 d dt (cid:90) (cid:90)
= − ∂tu · ∇u · ∂tudx + (∂tµ · ∇φ + µ · ∇∂tφ + ∂tθe2)∂tudx
L2 + ((cid:107)∂tu(cid:107)L2(cid:107)∇φ(cid:107)L∞ + (cid:107)µ(cid:107)L∞(cid:107)∇∂tφ(cid:107)L2 + (cid:107)∂tθ(cid:107)L2)(cid:107)∂tu(cid:107)L2 L2 + C((cid:107)∆∂tφ(cid:107)L2 + (cid:107)∂t(φ3 − φ)(cid:107)L2 + (cid:107)∇∂tφ(cid:107)L2 + 1)(cid:107)∂tu(cid:107)L2,
≤ (cid:107)∇u(cid:107)L∞(cid:107)∂tu(cid:107)2 ≤ (cid:107)∇u(cid:107)L∞(cid:107)∂tu(cid:107)2
which implies
(2.23) (cid:107)∂tu(cid:107)L∞(0,T ;L2) + (cid:107)∂tu(cid:107)L2(0,T ;H 1) ≤ C.
Using (2.23), (2.22), (2.1), (2.13), (1.1), (1.2), (1.6) and the H 2-theory of the Stokes
system, we arrive at
(cid:107)u(cid:107)L∞(0,T ;H 2) ≤ C.
This completes the proof.
(cid:164)
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors read and approved the final manuscript.
Acknowledgment
11171154) and NSFC (Grant No.
This study was supported by the NSFC (No. 11101376).
References
[1] Boyer, Franck: Mathematical study of multi-phase flow under shear through order
parameter formulation. Asymptot. Anal. 20, 175–212 (1999)
[2] Fan, Jishan; Zhou, Yong: A note on regularity criterion for the 3D Boussinesq
system with partial viscosity. Appl. Math. Lett. 22, 802–C805 (2009)
[3] Zhou, Yong; Fan, Jishan: On the Cauchy problems for certain Boussinesq-α
equations. Proc. R. Soc. Edinburgh Sect. A 140, 319–C327 (2010)
7
[4] Chae, Dongho: Global regularity for the 2D Boussinesq equations with partial
viscosity terms. Adv. Math. 203, 497–513 (2006).
8