Giaûng Vieân : Giaûng Vieân :

11

NCS. Ngoâ Taán Döôïc NCS. Ngoâ Taán Döôïc ThS. Trầần Minh Tuøng n Minh Tuøng ThS. Tr

a) Quan saùt vaø ño soá Reynold ôû hai traïng thaùi chaûy taàng vaø chaûy roái.

b) So saùnh vaø nhaän xeùt soá Re giöõa thöïc nghieäm vaø lyù thuyeát

22

Doøng chaûy cuûa löu chaát ñöôïc ñaët tröng baèng caùc ñöôøng doøng, ñöôøng doøng laø ñöôøng cong maø tieáp tuyeán vôùi noù taïi moät thôøi ñieåm ñaõ cho laø vector toác ñoä.

Khi doøng chaûy thöïc hieän maø caùc ñöôøng doøng trong ñoù chuyeån ñoäng song song vôùi nhau thì traïng thaùi chaûy ñöôïc goïi laø “chaûy taàng”

Khi doøng chaûy thöïc hieän maø caùc ñöôøng doøng trong ñoù chuyeån ñoäng khoâng song song vôùi nhau (hoån ñoän) thì traïng thaùi chaûy ñöôïc goïi laø “chaûy roái”

33

Hieän töôïng chaûy cuûa löu chaát thay ñoåi phuï thuoäc vaøo toác ñoä doøng chaûy ñöôïc phaân bieät baèng cheá ñoä chaûy (T.t.Chaûy)

Re = Vd/ = Vd/

Cheá ñoä chaûy ñöôïc ñaùnh giaù baèng ñaïi löôïng khoâng thöù nguyeân, goïi laø chuaån soá ñoàng daïng reynold vaø ñöôïc kyù hieäu laø Re

Trong ñoùñoù:: Trong

(d=1,5)

rieâng cuûacuûa moâimoâi tröôøng löôïng rieâng khoái löôïng chaát (g/cm(g/cm33))

tröôøng löulöu chaát (Pas) chaát (Pas) tuyeät ñoáiñoái cuûacuûa löulöu chaát

VV: Vaän toác trung bình cuûa doøng chaûy (cm/s). dd: ñöôøng kính oáng (cm) :: khoái :: ñoäñoä nhôùt :: ñoäñoä nhôùt nhôùt tuyeät nhôùt töông töông ñoáiñoái (cm(cm22/s)/s) fuïfuï thuoäc thuoäc vaøovaøo ttoo (trang (trang

V = Q/S

44

baûng) baûng)

Hinh vẽ Hinh vẽ

55

a) Quan saùt vaø xaùc ñònh ñöôøng aùp (Z+P/).

b) Veõ ñöôøng naêng vaø ñöôøng aùp.

c) So saùnh & nhaän xeùt giöõa thöïc nghieäm & lyù thuyeát

Phöông trình becnuli laø phöông trình caân baèng naêng löôïng cuûa doøng chaûy löu chaát, ñöôïc bieåu dieãn nhö sau

66

Toång naêng löôïng toån thaát töø 1-1 ñeán 2-2

= + naêng löôïng löu chaát taïi td 1-1 naêng löôïng löu chaát taïi td 2-2

PHÖÔNG TRÌNH BECNULI

+

+

=

+

+

+

z

z 1

2

- 21

wh

2 v 1 2 g

2 g

2 v 2 2 g

p 1  g 1

p  2

tónh, pizoâmet hayhay coøncoøn goïigoïi laølaø coätcoät aùpaùp tónh, löôïng naøynaøy theotheo

doøng chaûy

ñöôøng aùpaùp..

(z(z ++ p/p/g)g) laølaø ñoäñoä caocao pizoâmet ñöôøng bieåubieåu dieãndieãn söïsöï thaythay ñoåiñoåi cuûacuûa ñaïiñaïi löôïng ñöôøng chaûy goïigoïi laølaø ñöôøng phöông cuûacuûa doøng phöông =g laø troïng löôïng rieâng cuûa löu chaát. Ñoái vôùi löu chaát khoâng neùn eùp & trong ñieàu kieän ñaúng nhieät thì 1=2 =  vaø 1 = 2 =  = g.

77

v2/2g laø coät aùp vaän toác hay coøn goïi laø coät aùp ñoäng.

(z + p/g + v2/2g) laø naêng löôïng toaøn phaàn cuûa doøng chaûy hay ñoä cao naêng löôïng, ñöôøng bieåu dieãn söï thay ñoåi cuûa ñaïi löôïng naøy goïi laø ñöôøng naêng.

hw1-2 Toån thaát naêng löôïng töø maët caét 1-1 ñeán 2-2

ChuùChuù yùyù Phöông trình baûo toaøn naêng löôïng chính xaùc cuûa doøng chaûy laø phöông trình Navie-Stoác coøn phöông trình baûo toaøn naêng löôïng ñöôïc öùng duïng tính toaùn laø phöông trình Becnuli

88

+

+

=

+

+

+

z

z 1

2

wh

- 21

2 v 1 g 2

2 g

2 v 2 g 2

p 1  g 1

p  2

d7 = d8 = d10 = d11 = 1,5 cm.

99

d9 = 0,75 cm vaø z – chieàu cao vò trí

Re

Laàn ño

Vò trí

Nhieät ñoä nöôùc (oC)

h0 (cm)

h1 (cm)

h (cm)

Q (cm3/s)

d (cm)

z+p/ (cm)

7

8

1

9

10

11

7

8

2

9

10

11

1010

Q (cm3/s)

v (cm/s)

v2/2g (cm)

z+/ (cm)

z+p/+v2/2g (cm)

Vò trí

Laàn 1

Laàn 2

Laàn 1

Laàn 2

Laàn 1

Laàn 2

Laàn 1

Laàn 2

Laàn 1

Laàn 2

7

8

9

10

11

1111

Bieåu ñoà Bieåu ñoà

1212

Toån thaát naêng löôïng Toån thaát naêng löôïng cuûa doøng chaûy cuûa doøng chaûy

1313

a) Xaùc ñònh heä soá ma saùt .

b) Khaûo saùt hieän töôïng maát naêng doïc ñöôøng cuûa doøng chaûy treân moät ñoïan ñöôøng oáng troøn laäp baûng roài so saùnh vaø nhaän xeùt keát quaû ño ñöôïc giöõa thöïc nghieäm vaø lyù thuyeát

1414

Doøng chaûy cuûa löu chaát trong oáng daãn do coù ma saùt nhôùt neân gaây ra toån thaát naêng löôïng vaø toån thaát naøy bò chuyeån hoùa thaønh nhieät naêng khoâng theå laáy laïi ñöôïc. Do ñoù toån thaát naøy ñöôïc goïi laø toån thaát ma saùt (hoaëc toån thaát theo chieàu daøi).

Toån thaát ma saùt laø moät soá haïng trong phöông trình Becnuli bieåu dieãn treân ñoïan oáng giöõa 2 maët caét 1-1 vaø 2-2.

1

2 1

2

2 2

p v p v

- 21

1

2

= + - + + + h ( z ) ( z )

2

1515

 g 2 g g 2 g  1

(Darcy )

hhdd = = LVLV22/2/2dgdg

 - heä soá ma saùt.

l- chieàu daøi ñoïan oáng töø 1-1ñeán 2-2. (L=85cm)

d- ñöôøng kính trong cuûa oáng daãn (d=1,5cm)

v – vaän toác trung bình cuûa doøng chaûy trong oáng.

1616

Heä soá  phuï thuoäc vaøo cheá ñoä chaûy cuûa nöôùc trong oáng, trong vuøng chaûy roái noù coøn phuï thuoäc vaøo ñoä nhaùm cuûa beà maët oáng daãn.

Trong vuøng chaûy taàng (Re < 2300) thì  = 64/Re Trong vuøng chaûy roái (Re = 4000  100000) thì :

 = 0,3164/(Re)0,25

Trong vuøng chaûy roái (Chính xaùc Re > 5000 ) thì :

=

l

2

log(Re

- 8,0)

1 l

1717

Re

V (cm/s)

H2 (cm)

Laàn ño

t (oC)

Q (cm3/s)

d (cm)

H1 (cm)

H (cm)

1

2

1818

Re

Q (cm3/s)

Laàn ño

V cm/s

d (cm)

H (cm)

Theo Prantl

Theo Darcy

1

2

1919

a) Xaùc ñònh heä soá söùc caûn cuïc boä  cho thieát dieän môû roäng vaø thu heïp cuïc boä.

b) So saùnh vaø nhaän xeùt keát quaû ño ñöôïc giöõa thöïc nghieäm vaø lyù thuyeát

Khi doøng chaûy thay ñoåi veà phöông vaø trò soá toác ñoä thì gay ra toån thaát naêng löôïng, ngöôøi ta goïi laø toån thaát

2020

cuïc boä.

Toån thaát cuïc boä thöôøng ñöôc tính theo C.thöùc Veysbak

v : toác ñoä trung bình cuûa doøng chaûy

2

v

tröôùc trôû löïc cuïc boä

x=

h

cb

2

g

 - heä soá trôû löïc cuïc boä.

=

+

-

+

(

H

)

(

H

)

h cb

t

s

v 2

2 s g

v 2

2 t g

Ht + v2/2g – aùp löïc tröôùc trôû löïc.

Hs+ v2/2g – aùp löïc sau trôû löïc.

2121

vaän toác tröôùc trôû löïc. vvtt –– vaän toác tröôùc trôû löïc. vaän toác sau trôû löïc. vvs s –– vaän toác sau trôû löïc.

Khi doøng chaûy môû roäng ñoät ngoät thì ta coù: Khi doøng chaûy môû roäng ñoät ngoät thì ta coù:

=

+

-

+

(

H

)

(

H

)

hmr

3

4

2 v 3 2 g

v 2

2 4 g

g

Vaø heä soá trôû löïc:

=x

hmr v

2 2 3

Vôùi bieán ñoåi toaùn hoïc ta coù :  = (1-S3/S4)2.

S3, S4 – tieát dieän tröôùc vaø sau môû roäng ñoät ngoät.

2222

Khi doøng chaûy co heïp ñoät ngoät thì ta coù: Khi doøng chaûy co heïp ñoät ngoät thì ta coù:

=

+

-

+

(

H

)

(

H

)

hch

5

6

2 v 5 2 g

v 2

2 6 g

Vaø heä soá trôû löïc:

g

hch=x v

2 2 5

Vôùi bieán ñoåi toaùn hoïc ta coù :  = (1-S5/S6)2.

S5, S6 – tieát dieän tröôùc vaø sau thu heïp ñoät ngoät.

2323

Ño löu löôïng vaø vaän toác trung bình cuûa doøng chaûy

Re

d (cm)

H3 (cm)

Q (cm3/s)

v (cm/s)

H4 (cm)

H (cm)

1

2

2424

Laàn ño t (oC)

Re

d (cm)

H3 (cm)

Q (cm3/s)

v (cm/s)

H4 (cm)

H (cm)

1

2

Laàn ño t (oC)

Q Re

Co heïp

Laàn ño V cm/s d (cm)

Môû roäng

1

2

2525

 Quan saùt vaø veõ quyõ ñaïo doøng chaûy qua voøi vaø loã

2gH

P.trình x= vct y= 0,5gt2 vôùi : vc= 0,97

 Quan saùt hieän töôïng thaét doøng.

 Tính heä soá löu löôïng  cuûa doøng chaûy qua loã &voøi.

Q =  2gH

2626