trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008 PHÇN I C¸CH CHøNG MINH C¤NG THóC TÝNH VËN TèC Vµ SøC C¡NG D¢Y CñA CON L¾C §¥N PH¦¥NG PH¸P:
Oα
B
α OαA
mgh
=
+
A
mgh B
1. C«ng thøc tÝnh vËn tèc t¹i vÞ trÝ bÊt kú: I Do con l¾c chuyÓn ®éng trong tr−êng träng lùc nªn c¬ n¨ng b¶o toµn Chän mèc thÕ n¨ng h=o t¹i vÞ trÝ c©n b»ng O. ¸p dông ®Þnh luËt B¶o toµn c¬ n¨ng cho 2 vÞ trÝ A vµ B ta cã
H
A
2. m v 2
(1) . WA=WB hay :
B
B
)
IO IH l
= −
=
−
. . ( l co s α o
Chó ý : con l¾c ®¬n ®−îc th¶ kh«ng vËn tèc ban ®Çu tõ vÞ trÝ A Nªn vA=O h A
O
= −
=
B
)]
)]
[ mg l
. ( lco s
[ mg l
. ( lco s
−
=
−
+
α
α o
2. m v 2
2.
.
)
v
. ( co s
) α
=
−
α o
B
[ . ( g l co s
]
Trong ®ã . ) . ( l co s α IO IB l Bh − Nªn thay vµo biÓu thøc (1) ta cã:
(2)
0oα=
T−¬ng ®−¬ng : Tõ ®ã ta cã c¸c tr−êng hîp sau x¶y ra :
2.
)
g l
=
−
cos(oo)=1 suy ra
. ( co s α o
[ . 1
]
1
a. T¹i vÞ trÝ c©n b»ng gãc v . ma x (3) ( T¹i VTCB vËn tèc ®¹t gi¸ trÞ cùc ®¹i )
0
trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008 10
α
≤
2
) 1 2.sin
. ( co s
α = −
1 ≈ −
0 10 , α≤ o α 2
NNÕÕuu ggããcc
2
2
) 1 2.sin
. ( co s
α = −
1 ≈ −
0
ta sö dông c«ng thøc gÇn ®óng : 2 α 2
α 0 2
α 0 2
.
=
−
2 2 g l α α 0
Bv
((44))
VVµµ cc««nngg tthhøøcc vvËËnn ttèècc ccùùcc ®®¹¹ii llóócc nnµµyy llµµ :: tthhaayy vvµµoo ((33)) ::
2
2
2.
2.
. 2.sin
)
g l
g l
=
. 1 (1 2.sin − −
=
v . ma x
α 0 2
α 0 2
0
2
0
2.
. .2.
.
g l
. g l
≈
=
sin
α 0
v . ma x
Vµ Thay tÊt c¶ vµo (2) ta cã :
2 α 4
2 α α 0 ≈ 2 4
0α α=
.min
o=
(5) Do
Bv
nªn
(cid:1) (cid:1) (cid:1) . P T m a + =
T¹i vÞ trÝ biªn 22..CC««nngg tthhøøcc ttÝÝnnhh ssøøcc cc¨¨nngg dd©©yy TT tt¹¹ii vvÞÞ ttrrÝÝ bbÊÊtt kkúú :: xxÐÐtt tt¹¹ii vvÞÞ ttrrÝÝ bbiiªªnn AA ttaa ccãã cc¸¸cc llùùcc tt¸¸cc ddôônngg llªªnn vvËËtt mm llµµ ssøøcc cc¨¨nngg ssîîii dd©©yy TT vvµµ ttrräänngg llùùcc PP.. TThheeoo ®®ÞÞnnhh lluuËËtt IIII NNIIUUTT¥¥NN ttaa ccãã ::
2
((66))
trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008 CChhiiÕÕuu ((66)) llªªnn pphh−−¬¬nngg ssîîii dd©©yy hh−−íínngg vvµµoo ®®iiÓÓmm ttrreeoo II cchhiiÒÒuu
2
. ( Pco s
. T m
−
+ =
) α
Bv l
3.
. ( co s
. ( co s
α
α
T mg =
) 2. −
dd−−¬¬nngg nnhh−− hh××nnhh vvÏÏ :: ((77))
[
]0 )
((88))
I
TT¹¹ii VVTTCCBB
TThhaayy ((22)) vvµµoo ((77)) :: 0oα= cos(oo)=1 nªn :
T
)
mg
=
3 2. −
.
. ( co s α 0
ma xT
[
]
α OαA
((99))
H
A
T
0α α=
nªn :
B
B
)
. . ( mg co s
) α
=
=
α 0
]
[ . ( mg co s
((1100))
TT¹¹ii vvÞÞ ttrrÝÝ hhaaii bbiiªªnn T min
O
α
0
P
PX
10
α
≤
2
) 1 2.sin
. ( co s
α = −
1 ≈ −
0 10 , α≤ o α 2
NNÕÕuu ggããcc
2
2
) 1 2.sin
. ( co s
α = −
1 ≈ −
0
ta sö dông c«ng thøc gÇn ®óng : 2 α 2
α 0 2
α 0 2
Vµ
0
3(1
)
mg
T mg ≈
−
) 2.(1 −
−
=
+
2 α
0
2 α 2
2 α 2
2 α 2
. 1 3. −
0oα=
Suy ra :
3
cos(oo)=1 nªn : (11) TT¹¹ii VVTTCCBB
trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008
0
)
)
mg
. ( co s
mg
=
3 2. −
=
−
.
α 0
ma xT
[
]
2 α 2
2
=
.
0
ma xT
mg α 1 +
. 3 2.(1 − ((1122))
0α α=
HHaayy ::
nªn :
0
)
.(1
)
.(1
)
T
. ( . mg co s
mg
mg
=
=
≈
−
=
−
) α
min
α 0
[ . ( mg co s
]
2 α 2
2 α 2
TT¹¹ii vvÞÞ ttrrÝÝ hhaaii bbiiªªnn
. ) t
0 (1 l
2.
T
2 . π
π
=
=
PPHHÇÇNN 22 ((1133)) BBiiÕÕnn tthhiiªªnn cchhuu kkúú ccññaa ccoonn ll¾¾cc ®®¬¬nn tthheeoo nnhhiiÖÖtt ®®éé,, ®®éé ccaaoo vvµµ vvÞÞ ttrrÝÝ ttrrªªnn ttrr¸¸ii ®®ÊÊtt PPHH¦¦¥¥NNGG PPHH¸¸PP:: DDùùaa vvµµoo cc««nngg tthhøøcc ::
l g
+ α g
0
0
c
0
t = 0t c
ol :: llµµ cchhiiÒÒuu ddµµII dd©©yy ttrreeoo ccoonn ll¾¾cc ëë l :: llµµ cchhiiÒÒuu ddµµII dd©©yy ttrreeoo ccoonn ll¾¾cc ëë α :: llµµ hhÖÖ ssèè nnëë ddµµII ëë 0000CC BBµµii ttoo¸¸nn 11:: XX¸¸cc ®®ÞÞnnhh tthhêêii ggiiaann ccoonn ll¾¾cc cchh¹¹yy ssaaii ttrroonngg mmççii cchhuu kkúú.. TTHH11:: KKhhii ëë ®®éé ccaaoo nnhhÊÊtt ®®ÞÞnnhh ((ccïïnngg ®®«« ccaaoo )) ccãã gg==ccoonnsstt vvµµ nnhhiiÖÖtt
t≠ )) 2
t ®®éé kkhh¸¸cc nnhhaauu (( 1 CCoonn ll¾¾cc cchh¹¹yy ®®óónngg ëë nnhhiiÖÖtt ®®éé tt11 ,, ttaa ccãã cchhuu kkúú TT11
4
TTrroonngg ®®ãã ::
trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008
(1
l 0
. ) t 1
2.
=
π
T 1
+ α g
(1
l 0
. ) t 2
=
2.
=
π
T 2
VVµµ cchhuu kkýý TT22
1 1
+ +
. t α 1 . t α
+ α g
T 1 T 2
2
SSuuyy rraa :: ((1144))
1ε< ≤ tthh×× ::
1 ≈ +
HHaayy :: ¸¸pp ddôônngg cc««nngg tthhóócc ggÇÇnn ®®óónngg :: vvííii 0
1 1
ε ε 2 1 − 2 2
+ +
ε 1 ε 2
)
t
2
1 ≈ +
((1155))
T 1 T 2
)
)
t
t
2
2
≈
1 − ≈
tthhaayy ((1155)) vvµµoo ((1144)) ttaa ccãã
( t α − 1 2 ( t − α 1 2
( t α − 1 2
T T − 1 2 T 2
)
t
2
=
=
((1166)) ⇔ HHaayy
T
1
T
2
NNHHËËNN XXÐÐTT::
++))NNÕÕuu tt11>>tt22 ssuuyy rraa TT11>>TT22 cchhuu kkúú ggii¶¶mm ®®åånngg hhåå cchh¹¹yy nnhhaannhh..
++))NNÕÕuu tt11< T T
−
1
2
T
2 T
∆
T
2
KKÕÕtt lluuËËnn :: MMççii nnggµµyy ®®ªªmm ®®åånngg hhåå cchh¹¹yy ssaaii mméétt kkhhoo¶¶nngg ) t 2 86400. 86400. = = θ TTõõ ((1166)) ssuuyy rraa ((1177)) (
t
α
−
1
2 T
∆
T
2 5 ((1188)) trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008
TTHH22:: kkhh¸¸cc ®®éé ccaaoo (( kkhhii gg## ccoonnsstt ,, nnhhiiÖÖtt ®®éé vvµµ cchhiiÒÒuu ddµµii ==
ccoonnsstt)) 2 = = 2 .
π 2 .
π T
0 l
g .
l R
.
G M 0 ++))ëë mmÆÆtt ®®ÊÊtt ®®åånngg hhåå cchh¹¹yy ®®óónngg :: ((1199)) 2 ) 2 .
π 2 .
π = = T
h TTrroonngg ®®ãã gg00 llµµ ggiiaa ttèècc rr¬¬ii ttùù ddoo ëë ggÇÇnn mmÆÆtt ®®ÊÊtt .. MM,, RR llµµ kkhhèèii
ll−−îînngg vvµµ bb¸¸nn kkÝÝnnhh ttrr¸¸ii ®®ÊÊtt .. ll llµµ cchhiiÒÒuu ddµµii dd©©yy ttrreeoo ccoonn ll¾¾cc..
aa)) ëë ®®éé ccaaoo hh cchhuu kkúú ccññaa ccoonn ll¾¾cc l
g .(
l R h
+
.
G M h g = 0 ((2200)) g = h 2 GGiiaa ttèècc ttrräänngg ttrr−−êênngg ëë mmÆÆtt ®®ÊÊtt ((2211)) ( ) .G M
2
R
.
G M
R h
+ GGiiaa ttèècc ttrräänngg ttrr−−êênngg ëë ®®éé ccaaoo hh :: ((2222)) h 1 = = < g
g R
R h
+ 0 SSuuyy rraa :: ssuuyy rraa TT00< T
0 T
h 1 = = < −
T
h CChhuu kkúú tt¨¨nngg ®®åånngg hhåå cchh¹¹yy cchhËËmm
§§éé bbiiÕÕnn tthhiiªªnn tt−−¬¬nngg ®®èèii ttrroonngg mmççii cchhuu kkúú ::
T
h
∆
R h
T
+
h 6 MMççii nnggµµyy ®®ªªmm ®®åånngg hhåå cchh¹¹yy cchhËËmm mméétt kkhhoo¶¶nngg :: trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008 86400. 86400. = = θ h
R h
+ ((2233)) T
∆
T
h 2 = = 2 .
π 2 .
π ' T
h ')
' l
g ' h ' g = h 2 ((2244)) TTrroonngg ®®ãã gghh’’ llµµ ggiiaa ttèè bb)) ëë ®®éé ssaauu hh’’((ssoo vvííii mmÆÆtt ®®ÊÊtt)) cchhuu kkúú ccññaa qquu¶¶ ll¾¾cc ::
.(
l R h
−
.
G M '
') .
G M
R h
− (
ll−−îînngg ccññaa pphhÇÇnn ttrr¸¸ii ®®ÊÊtt ggiiííii hh¹¹nn bbëëii mmÆÆtt ccÇÇuu ccãã bb¸¸nn kkÝÝnnhh ((RR--hh’’)) g = 0 ttrräänngg ttrr−−êênngg ëë ®®éé ss©©uu hh’’ ((2255)) MM’’ llµµ kkhhèèii .G M
2
R GGiiaa ttèècc ttrräänngg ttrr−−êênngg ëë mmÆÆtt ®®ÊÊtt :: ((2266)) 2 3
') . . (
π ρ R h
− ' 2 ' 4
3 . .( ) = = ' '
g
h
g M
M R
R h
− R
R h
− 0 . 3
.
.
R
π ρ 4
3
((ëë ®®©©yy vv×× ttrr¸¸ii ®®ÊÊtt hh××nnhh ccÇÇuu nnªªnn kkhhèèii ll−−îînngg ®®−−îîcc ttÝÝnnhh nnhh−− ttrrªªnn)) ' ' = TTõõ((2255)) vvµµ ((2266)) ssuuyy rraa hg
g R h
−
R 0 ' 2 ' ) 1 1 = = = = − 1
≈ − < ' .
'
G M
.(
.
G M R h g
h
g R h
−
R '
h
R '
h
2.
R 0 ' HHaayy ((2277)) llÊÊyy ((1199)) cchhiiaa cchh00 ((2244)) vvÕÕ tthheeoo 7 vvÕÕ vvµµ ®®ÓÓ ýý ®®ÕÕnn ((2277)) ttaa ccãã ::
T
R
0
T
−
h trÇn quang thanh-k15-ch-lý-®h-vinh-8-2008 1
2 1 1
≈ ± ε (
1
± = ± )
ε ε
2 T T 0 ' h = = (( DDoo ¸¸pp ddôônngg cc««nngg tthhøøcc ggÇÇnn ®®óónngg :: '
h
2
R −
T ' ' h h T 86400. 86400. = = θ VVËËyy mmççii nnggµµyy ®®ªªmm SSuuyy rraa TT11< '
h
2
R ' ∆
T
h ®®åånngg hhåå cchh¹¹yy ssaaii mméétt kkhhoo¶¶nngg :: 1
≈ + CChhóó ýý :: cc¸¸cc cc««nngg tthhøøcc ggÇÇnn ®®óónngg ssöö ddôônngg ttrroonngg bbµµii :: 1ε< ≤ tthh×× 1
1 ε ε
2
1
−
2
2 +
+ ε
1
ε
2 1
2 1 1
≈ ± ε (
1
± = ± )
ε vvííii 0 ε
2 n n
ε 1
≈ ± hhooÆÆcc :: ∓ 1 ≈ hhooÆÆcc:: (
1 ε
2 1 ≈ + − hhooÆÆcc :: '
ε ε
2
2 hhooÆÆcc :: ±
ε
ε
+
'
ε
− 1 . 1 ε ε + + ' 1
≈ + + '
ε ε
2
2 8 hhooÆÆcc ::h
R
O
)
±
ε
1
1
1
1