Đề kiểm tra kiến thức lần 1 có đáp án môn: Toán – Trường THPT chuyên Hạ Long
lượt xem 2
download
Các bạn học sinh và quý thầy cô tham khảo miễn phí đề kiểm tra kiến thức lần 1 có đáp án môn "Toán – Trường THPT chuyên Hạ Long" dưới đây để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề kiểm tra kiến thức lần 1 có đáp án môn: Toán – Trường THPT chuyên Hạ Long
- CHUYÊN HẠ LONG ĐỀ KIỂM TRA KIẾN THỨC LẦN 1 ĐỀ CHÍNH THỨC Môn: TOÁN (Đề thi gồm 01 trang) Thời gian làm bài:: 180 phút Câu 1(4 điểm). Cho hàm số: y = −2 x + 6 x − 5 3 2 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số đă cho. 2. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến đó đi qua A(-1;-13) 1 ∫ x e + 3x Câu 2 (2 điểm). Tính nguyên hàm dx x + 1 2 Câu 3 (2 điểm). 1. Giải phương trình: log 3 x + 3 log x 27 − 10 = 0 2. Một đội văn nghệ có 15 người gồm 9 nam và 6 nữ. Chọn ngẫu nhiên 8 người đi hát đồng ca. Tính xác suất để trong 8 người được chọn có số nữ nhiều hơn số nam. Câu 4 (2 điểm). Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f ( x ) = 3 x + 1 + 3 6 − x Câu 5 (2 điểm). Cho hình chóp S.ABC có các mặt ABC và SBC là những tam giác đều cạnh a. Góc giữa hai mặt phẳng (SBC) và (ABC) là 600 . Hình chiếu vuông góc của S xuống (ABC) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC theo a và tính khoảng cách từ B đến mặt phẳng (SAC) theo a. Câu 6 (2 điểm).Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1;1), B(3;2;2) và mặt phẳng (P): x + 2y – 5z – 3 = 0. Viết phương trình mặt phẳng (α ) đi qua A, B và vuông góc với mặt phẳng (P). Xác định hình chiếu vuông góc của A xuống (P). Câu 7 (2 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;6), B(1;1), C(6;3). 1. Viết phương trình đường tròn ngoại tiếp tam giác ABC . 2. Tìm trên các cạnh AB, BC, CA các điểm K, H, I sao cho chu vi tam giác KHI nhỏ nhất. 3 y 2 + x + 8 2 + x = 10 y − 3 xy + 12 Câu 8 (2 điểm). Giải hệ phương trình 5 y 3 2 − x − 8 = 6 y 2 + xy 3 2 − x Câu 9 (2 điểm). Chứng minh rằng: Với mọi ∆ABC ta đều có A B C A B C 9 3 sin + sin + sin cot + cot + cot ≥ 2 2 2 2 2 2 2 -----------------HẾT----------------- 1
- SƠ LƯỢC ĐÁP ÁN VÀ BIỂU ĐIỂM Câu Nội dung Điểm Câu 1 Cho hàm số: y = −2 x + 6 x − 5 (C ) 3 2 1. Khảo sát và vẽ đồ thị hàm số y = −2 x 3 + 6 x 2 − 5 TXĐ = R lim y = −∞ ; lim y = +∞ x →= ∞ x → −∞ y ' = −6 x + 12 x 2 x = 0 y' = 0 ⇔ x = 2 0,5 ………………………………………………………………………………….. x −∞ 0 2 +∞ y’ - 0 + 0 - y +∞ 3 -5 −∞ 0.5 …………………………………………………………………………………… …. Hàm số đồng biến trên (0;2) , hàm số nghịch biến trên (−∞;2) và (2;+∞ ) Đồ thị hàm số có điểm cực đại là A(2;3), có điểm cực tiểu là B(0;-5) y" = −12 x + 12 = 0 ⇔ x = 1 y” đổi dấu khi x qua 1 đồ thị hàm số có điểm uốn U(1;-1) Chính xác hóa đồ thị: x 0 2 1 3 -1 y -5 3 -1 -5 3 0,5 Đồ thị hàm số nhận U(1;-1) làm tâm đối xứng 2
- 0,5 2. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến đó đi qua A(-1;-13) .......................................................................................................................... Giả sử tiếp tuyến cần tìm tiếp xúc với đồ thị hàm số tại B( x0 ; f ( x0 )) 0,5 Phương trình tiếp tuyến tại B: y = (− 6 x 02 + 12 x 0 )(x − x 0 ) − 2 x 03 + 6 x 02 − 5 (∆ ) x0 = 1 đi qua A(-1;-13) ⇔ (x0 − 1)2 ( x0 + 2) = 0 ⇔ 0,5 x0 = −2 ……………………………………………………………………………………. ∆1 : y = 6 x − 7 1 Có hai tiếp tuyến cần tìm: ∆ 2 : y = −48 x − 61 Câu 2 1 ∫ x e + 3x Tính nguyên hàm dx x + 1 2 x A= ∫ x e 3 x + 1 dx = ∫ xe dx + ∫ 2 3x dx 0,25 x + 1 2 x +1 du = dx u = x ∫ xe ⇒ 3x TÍnh A1 = dx đặt e dx = dv v = 1 e 3 x 3 x 0,25 3 1 3x 1 3x 1 1 = xe − ∫ e dx = xe 3 x − e 3 x + C1 0,5 3 3 3 9 ……………………………………………………………………………………. xdx 1 d ( x 2 + 1) 1 = = ln x 2 + 1 + C2 Tính A2 = ∫ x 2 + 1 2 ∫ x 2 + 1 0,5 2 1 1 1 A = xe3 x − e3 x + ln x 2 + 1 + C 0,5 Vậy 3 9 2 3
- Câu 3 1. Giải phương trình log 3 x + 3 log x 27 − 10 = 0 Điều kiện: 0 < x ≠ 1 0,25 9 Phưng trình trở thành: log 3 x + − 10 = 0 log 3 x log 3 x = 1 ⇔ 0.25 log 3 x = 9 x = 3 ⇔ x = 3 9 0.5 2. Một đội văn nghệ có 15 người gồm 9 nam và 6 nữ. Chọn ngẫu nhiên 8 người đi hát đồng ca. Tính xác suất dể trong 8 người được chọn có số nữ nhiều hơn số nam. Số cách chọn ra 8 người là: C158 = 6435 0,25 C . C + C . C = 540 5 3 6 2 0.5 Số cách chọn ra 8 người mà số nữ nhiều hơn số nam là: 6 9 6 9 ……………………………………………………………………………………. 540 12 Xác suất để chọn được 8 người thỏa mãn là: = 0,25 6435 143 Câu 4 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f ( x ) = 3 x + 1 + 3 6 − x ................................................................................................................................. 1 0,25 TXĐ = − 3 ;6 3 3 1 0,5 f ' ( x) = − − ;6 2 3 x + 1 2 6 − x xác định trên 3 ................................................................................................................................. 5 1 0,25 f ' ( x ) = 0 ⇔ x = ∈ − ;6 4 3 ……………………………………………………………………………………. 1 f − = 57 3 0,5 f (6 ) = 19 5 f = 2 19 4 .......................................................................................................... Vậy min f ( x) = f (6) = 19 1 x∈ − ; 6 0,5 3 5 max f ( x) = f = 2 19 1 x∈ − ; 6 4 3 Câu 5 Cho hình chóp S.ABC có các mặt ABC và SBC là những tam giác đều cạnh a. Góc giữa hai mặt phẳng (SBC) và (ABC) là 600 hình chiếu vuông góc của S 4
- xuống (ABC) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC theo a và tính khoảng cách từ B đến mặt phẳng (SAC). Gọi M là trung điểm của BC Lập luận được góc giữa (SBC) và (ABC) là góc ∠ SMA = 600 0,5 a 3 3 3a 2 SAM đều cạnh bằng ⇒ dt∆SAM = 2 16 3 1 a 3 VS . ABC = . BC . dt∆SAM = 0,5 3 16 ……………………………………………………………………………………. 1 a 13 a 3 a 2 39 0,5 dt∆SAC = . . = 2 4 2 16 3V B.SAC 3. a 3 3 3a 13 d ( B; ( SAC )) = = = dt∆SAC 2 a 39 13 0,5 16 . 16 Câu 6 Cho A(2;1;1), B(3;2;2) và mặt phẳng (P): x + 2y – 5z – 3 = 0. Viết phương trình mặt phẳng (α ) đi qua AB và vuông góc với mặt phẳng (P). Xác định hình chiếu vuông góc của A xuống (P). Chọn nα = AB ∧ n β = (−7;6;1) 0,5 ............................................................................................................................... ⇒ phương trình mặt phẳng (α ) : −7( x − 2) + 6( y − 1) + 1(z − 1) = 0 0,5 Hay − 7 x + 6 y + z + 7 = 0 …………………………………………………………………………………… Gọi A’(x0;y0 ;z0) làhình chiếu vuông góc của A xuống mặt phẳng (P),Ta có: A ' ∈ ( P ) và AA ', nP cùng phương. 0,5 x0 + 2 y0 − 5 z 0 − 3 = 0 32 19 1 ⇔ x 0 − 2 y 0 − 1 z 0 − 1 ⇒ A' ; ; 1 = 2 = −5 15 15 3 0,5 5
- Câu 7 Cho tam giác ABC có A(2;6), B(1;1), C(6;3). a)Viết phương trình đường tròn ngoại tiếp tam giác ABC. Gọi phương trình đường tròn ngoại tiếp tam giác ABC là x 2 + y 2 + 2ax + 2by + c = 0,(a 2 + b 2 − c > 0). Ta có 4 + 36 + 4a + 12b + c = 0 0,5 1 + 1 + 2a + 2b + c = 0 36 + 9 + 12a + 6b + c = 0 −139 −147 240 0,25 ⇒a= ;b = ;c = (thỏa mãn) 46 46 23 139 147 240 Vậy pt đường tròn ngoại tiếp tam giác ABC là: x 2 + y 2 − x− y+ = 0. 0,25 23 23 23 b) Tìm trên các cạnh AB, BC, CA các điểm K, H, I sao cho chu vi tam giác KHI nhỏ nhất. A(2;6), B(1;1), C(6;3) Ta có: AB (−1; −5); AC (4; −3); BC (5;2) ⇒ AB = 26; AC = 5; BC = 29 BC > AB > AC ⇒ A>C >B , mà cos A > 0 ABC nhọn. ................................................................................................................................ 0,25 Gọi E, F lần lượt đối xứng với H qua AB, AC. Ta có: AE = AH = AF , suy ra tam giác AEF cân tại A và EAF = 2 A. Chu vi ∆HIK = KE + KJ + IF ≥ EF . Gọi M là trung điểm EF, trong tam giác vuông AME, ta có ME = AE.sin A = AH sin A , Suy ra: Chu vi tam giác HKI là 6
- 2dt ∆ABC KE + KJ + IF ≥ EF EF = 2sin A. AH ≥ 2sin A. d ( A, BC ) = R Dấu “=” xảy ra ⇔ H là chân đường cao kẻ từ A xuống BC và K,I là giao điểm 0,25 của EF với AB, AC. …………………………………………………………………………………… Ta chứng minh: IHF + CHF = A. = 1 Có: IHF AHF − AHI = AHF − AFI = AHF − (1800 − 2 A) = C − 900 + A 2 = 900 − C FHC , suy ra : IHF + CHF = A , suy ra tứ giác ABHI nội tiếp, suy ra AIB = AHB = 900 , suy ra I là chân đường cao tam giác ABC kẻ từ B. Tương 0,25 tự có K là chân đường cao của C xuống AB. .............................................................................................................................. Phương trình các đường thẳng ( AB ) : 5 x − y − 4 = 0;( AC ) : 3 x + 4 y − 30 = 0;( BC ) : 2 x − 5 y + 3 = 0 ( AH ) : 5 x + 2 y − 22 = 0;( BI ) : 4 x − 3 y − 1 = 0;(CK ) : x + 5 y − 21 = 0 104 59 H ; 29 29 Suy ra: K 41 ; 101 0,25 26 26 94 117 I ; 25 25 Câu 8 3 y 2 + x + 8 2 + x = 10 y − 3 xy + 12 Giải hệ phương trình 3 5 y 2 2 − x − 8 = 6 y + xy 3 2−x Điều kiện: x ∈ [− 2;2] Nhận xét y = 0 không thỏa mãn phương trình (2) ( ) 3 3 2 2 0,5 ( 2) ⇔ 2 − x + 3 2 − x = + 3 (*) y y ............................................................................................................................... Xét hàm số f (t ) = t 3 + 3t trên R hàm số đồng biến trên R 0,5 (*) ⇔ f ( ) 2 2 2 − x = f ⇔ 2 − x = thế vào (1) y y .............................................................................................................................. (1) ⇔ 3 y 2 + x + 8 2 + x = 10 y − 3 xy + 12 ⇔ 3 2 + x + 4 2 + x 2 − x = 10 − 3x + 6 2 − x ⇔ 3 2 + x − 6 2 − x + 4 4 − x 2 + 3 x − 10 = 0 (**) 0,5 ............................................................................................................................... Đặt 2 + x − 2 2 − x = t ⇒ t 2 = 10 − 3x − 4 4 − x 2 7
- t = 0 0,25 Phương trình (**) trở thành 3t − t 2 = 0 ⇔ t = 3 ............................................................................................................................. 6 0,25 - Với t=0: x = y= 5 5 - Với t=3: 2 + x − 2 2 − x = 3 , phương trình vô nghiệm, vì vế trái ≤ 2 Câu 8 Chứng minh rằng: Với mọi ∆ABC ta đều có A B C A B C 9 3 sin + sin + sin cot + cot + cot ≥ 2 2 2 2 2 2 2 .................................................................................................................................. A B C π A B C A B A , , ∈ 0; sin ,sin ,sin ,cos , cos ,cos > 0 Ta có : 2 2 2 2 nên 2 2 2 2 2 2 0,5 A B C A B C sin + sin + sin ≥ 3 3 sin sin sin ≥ 0 2 2 2 2 2 2 …………………………………………………………………………………… A B C cot + cot + cot 2 2 2 A B C C B sin (sin cos + sin cos ) = 2 2 2 2 2 A B C 2sin sin sin 2 2 2 B A C C A sin (sin cos + sin cos ) + 2 2 2 2 2 A B C 2sin sin sin 2 2 2 C A B B A sin (sin cos + sin cos ) + 2 2 2 2 2 A B C 2sin sin sin 2 2 2 A A B B C C sin cos + sin cos + sin cos = 2 2 2 2 2 2 A B C 2sin sin sin 2 2 2 3 sin A A B B C C cos .sin cos .sin cos ≥3 2 2 2 2 2 2 A B C 2sin sin sin 2 2 2 ……………………………………………………………………………………………………………………………………………………………. A B C A B C 9 A B C sin + sin + sin cot + cot + cot ≥ 3 cot cot cot 2 2 2 2 2 2 2 2 2 2 8
- A B C Lại có cot cot cot ≥3 3 2 2 2 ……………………………………………………………………………………………………………………………………………………………… A B C A B C 9 3 sin + sin + sin cot + cot + cot ≥ 2 2 2 2 2 2 2 Dấu “=” xảy ra ABC đều 0,5 0,5 0,5 9
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề kiểm tra 1 tiết lần 1 môn tiếng Anh lớp 11 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 007
2 p | 225 | 32
-
Đề kiểm tra kiến thức vào lớp 10 môn Toán chuyên năm 2016-2017 lần thứ III - Trường THPT chuyên Nguyễn Huệ
3 p | 206 | 23
-
Đề kiểm tra 1 tiết lần 2 môn Hóa học lớp 10 năm 2017-2018 - THPT Buôn Ma Thuột - Mã đề 741
3 p | 119 | 12
-
Đề kiểm tra kiến thức năm học 2015-2016 môn Vật lý lần 1 - Trường THPT chuyên Nguyễn Huệ (Mã đề 132)
30 p | 86 | 6
-
ĐỀ KIỂM TRA KIẾN THỨC LẦN II Môn: Hoá học khối A - MÃ ĐỀ THI 504
4 p | 76 | 4
-
Đề kiểm tra 1 tiết lần 2 môn tiếng Anh lớp 10 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 435
2 p | 87 | 4
-
Đề thi thử THPT Quốc gia và kiểm tra kiến thức nâng cao môn Hóa học năm 2015-2016 có đáp án - Trường THPT Việt Yên II (Lần 1)
6 p | 133 | 4
-
Đề kiểm tra sát hạch lần 1 môn Toán 12 năm 2018-2019 - Trường THPT Thuận Thành số 2
7 p | 65 | 3
-
Đề kiểm tra kiến thức lần 1 có đáp án môn: Toán 12 - Trường THPT chuyên Hạ Long
9 p | 74 | 3
-
Đề kiểm tra 1 tiết lần 1 môn tiếng Anh lớp 11 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 002
2 p | 32 | 3
-
Đề kiểm tra 1 tiết lần 2 môn Đại số lớp 10 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 005
4 p | 35 | 3
-
Đề kiểm tra kiến thức kì thi THPT Quốc gia lần 1 năm 2015 môn Vật lý (Mã đề 886) - Trường THPT Yên Định 2
5 p | 69 | 3
-
Đề kiểm tra 1 tiết lần 2 môn tiếng Anh lớp 11 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 486
3 p | 83 | 2
-
Đề kiểm tra 1 tiết lần 1 môn tiếng Anh lớp 12 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 020
2 p | 120 | 2
-
Đề kiểm tra chất lượng lần 1 năm 2017-2018 môn tiếng Anh lớp 11 - THPT Xuân Hòa - Mã đề 132
4 p | 74 | 2
-
Đề kiểm tra chất lượng lần 1 năm 2017-2018 môn tiếng Anh lớp 11 - THPT Xuân Hòa - Mã đề 485
4 p | 60 | 2
-
Đề kiểm tra 1 tiết lần 2 môn tiếng Anh lớp 12 năm 2017-2018 - THPT Ngô Gia Tự - Mã đề 570
2 p | 61 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn