
Cho hµm sè y = x4+ 8ax3+ 3(1 + 2a)x2-4.
1) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè khi a = 0.
2) X¸c ®Þnh a ®Ó hµm sè chØ cã mét cùc tiÓu mµ kh«ng cã cùc ®¹i.
C©u II. 1) Tam gi¸c ABC cã c¸c gãc tháa m·n ®iÒu kiÖn
3(cosB + 2sinC) + 4(sinB + 2cosC) = 15.
Chøng tá r»ng ABC lµ mét tam gi¸c vu«ng.
2) Gi¶i phû¬ng tr×nh
sin2x+1
4sin23x = sinxsin23x.
C©u III.
1) Chøng minh r»ng nÕu n lµ mét sè tù nhiªn ch½n, vµ a lµ mét sè lín h¬n 3, th× phû¬ng tr×nh
(n + 1)xn+2 - 3(n + 2)xn+1 +a
n+2 =0
kh«ng cã nghiÖm.
2) Gi¶i vµ biÖn luËn theo a hÖ bÊt phû¬ng tr×nh
()()
()
xx
xaxaa
2
22
120
31 2 0
−−≥
−++ +≤
www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0
________________________________________________________________________________
C©u I.

C©u I. 1) §Ò nghÞ b¹n h·y tù gi¶i nhÐ!
2) Ta cã : y’=4x
3+ 24ax2+ 6(1 + 2a)x = 2x[2x2+ 12ax + 3(1 + 2a)].
y’ lu«n cã nghiÖm xo=0víi mäi a. §Ó hµm chØ cã mét cùc tiÓu mµ kh«ng cã cùc ®¹i th×:
a) hoÆc tam thøc f(x) = 2x2+ 12ax + 3(1 + 2a) kh«ng cã nghiÖm;
b) hoÆc f(x) cã nghiÖm kÐp x1=x
2¹0;
c) hoÆc f(x) cã nghiÖm xo=0.(§Ò nghÞ gi¶i thÝch !)
D‘ = 6(6a2-2a-1)
Trûêng hîp 1ÛD‘<0Û1- 7
6<a<1+ 7
6.
Trûêng hîp 2 ÛD'
() ()
=
¹
ì
í
ï
ï
î
ï
ï
Û
=+
+¹
ì
í
ï
ï
ï
î
ï
ï
ï
0
00
17
6
31 2 0
f
a
a
Û±
a=17
6.
Trûêng hîp 3Ûf(0) = 0 Û3(1+2a)=0 Ûa=-1
2.
VËy ta ®ûîc 1- 7
6a1+ 7
6
££ hoÆc a=-1
2.
C©u II. 1) Ta cã 3cosB + 4sinB £3+4
22
=5,
dÊu = chØ x¶y ra khi cosB=3
5,sinB=4
5. (1)
Tû¬ng tù 6sinC + 8cosC = 2(3sinC + 4cosC) £10, dÊu = chØ x¶y ra khi sinC = 3
5,cosC= 4
5.(2)
Thµnh thö ®¼ng thøc 3(cosB + 2sinC) + 4(sinB + 2cosC) = 15
khi ta cã ®ång thêi (1) vµ (2), mµ B vµ C lµ hai gãc cña mét tam gi¸c, vËy B=p
2-C
vµA=p
2.
2) ViÕt l¹i phû¬ng tr×nh:
www.khoabang.com.vn LuyÖn thi trªn m¹ng
_______________________________________________________________

sin2x+1
4sin23x - sinxsin23x=0Û(sinx -1
2sin23x)2+1
4sin23x(1 - sin23x)=0.
Thay 1 - sin23x = cos23x vµo ta ®ûîc :
(sinx - 1
2sin23x)2+1
16 sin26x=0Ûsin sin ( )
sin ( )
xx
x
=
=
ì
í
ï
ï
ï
î
ï
ï
ï
1
231
602
2
Gi¶i (2) ta ®ûîc x=kp
6.
CÇn chän k nguyªn sao cho :
sin k
6=1
2sin 3k
6
2
pp
Ûsink
6=1
2sin k
6
2
pp
=
=
=+
ì
í
ï
ï
ï
î
ï
ï
ï
02
1
221
nÕu k m
nÕu k m
NÕuk=2mth× : Sin sin sin
2
6033
mm
mn
pp
=Û Û = .vËy k=6n(nnguyªn).
NÕu k=2m+1th× :sin(2m + 1) p
6=1
2. Khi ®ã :(2m + 1) pp p
6=6+2n hoÆc (2m+1)pp p
6=5
6+2n .
Tõ ®ã sÏ ®ûîc k=1+12nhoÆck=5+12n.
KÕt luËn : Phû¬ng tr×nh ban ®Çu cã ba hä nghiÖm lµ x1=np,x
2=p
6+2np,x
3=5
6
p+2np(n nguyªn).
C©u III. 1) §Æt f(x) = (n + 1)xn+2 - 3(n + 2)xn+1 +a
n+2 ta cã
f’(x) = (n + 1)(n + 2)xn+1 - 3(n + 1)(n + 2)xn=(n+1)(n+2)x
n(x - 3).
V× n lµ sè tù nhiªn ch½n nªn f’(x) cã dÊu cña (x - 3), trõ khix=0vµx=3th×f’(x) = 0, ta cã b¶ng biÕn thiªn cña hµm
sè f(x) nhûsau :
x-¥03+¥
f’(x) - 0 - 0 +
f(x) an+2
m
www.khoabang.com.vn LuyÖn thi trªn m¹ng
_______________________________________________________________

víi m=a
n+2 -3
n+2.
NhûvËy, nÕu a>3th× m>0, do ®ã f(x) lu«n dû¬ng, chøng tá r»ng phû¬ng tr×nh f(x) = 0 v« nghiÖm.
2) ViÕt l¹i hÖ nhûsau :
(x2-1)(x-2)³0 (1)
(x - a)[x - (2a + 1)] £0.(2)
a) Gi¶i (1) sÏ ®ûîc nghiÖm lµ : -1 £x£1hoÆc 2£x<+¥.
b) Gi¶i (2) :
NÕu a>2a + 1(a <-1)th× nghiÖm cña (2) lµ :2a+1£x£a(<-1).
NÕu a£2a+1(a³-1) th× nghiÖm cña (2) lµ a£x£2a+1.
c) KÕt hîp nghiÖm :
NÕu a<-1 th× dÔ thÊy hÖ v« nghiÖm.
NÕu a³2th× nghiÖm cña hÖ lµ a£x£2a+1.
NÕu 1<a<2th× nghiÖm cña hÖ lµ 2£x£2a+1(v× khi ®ã : 3<2a+1<5).
NÕu 1
2
£a£1th× nghiÖm cña hÖ lµ :a £x£1hoÆc
2£x£2a+1 (v× lóc ®ã :2£2a+1£3).
NÕu 0£a<1
2th× nghiÖm cña hÖ lµ :a£x£1
(lóc ®ã : 1£2a+1<2).
NÕu -1 £a<0th× nghiÖm cña hÖ lµ :
a£x£2a+1(lóc ®ã - 1£2a+1<1).
www.khoabang.com.vn LuyÖn thi trªn m¹ng
_______________________________________________________________

www.khoabang.com.vn LuyÖn thi trªn m¹ng
________________________________________________________________
C©u IVa. Trong mÆt ph¼ng, c¸c ®−êng th¼ng
=+
=
=
1
1
xx mt
(d) yy nt
, (d') 2
2
xx pt'
yy qt'
=
+
=
+
theo thø tù cã vect¬ chØ ph−¬ng u(m;n)
G, v(p;q)
G
.
1) §Ó (d) vµ (d') c¾t nhau : u
G kh«ng song song víi v
G
⇔ mp − np ≠ 0.
2) §Ó (d) // (d') ⇔ u//v
GG
⇔ mq − np = 0.
3) §Ó (d) trïng víi (d') : tr−íc hÕt ph¶i cã (d) // (d'), tøc lµ mp − np = 0.
Sau ®ã ph¶i tån t¹i o
t sao cho
1o2
1o2
xmt x
ynt y.
+=
+=
Khö o
t ra khái hÖ nµy, ta ®−îc : 12 12
m(y y ) n(x x ).−= −
VËy ®iÒu kiÖn ph¶i t×m lµ
12 12
mq np 0
m(y y ) n(x x )
−=
−= −
hoÆc còng vËy
12 12
mq np 0
p(y y ) q(x x ) 0
−=
−
−−=
4) §Ó (d) ⊥ (d') ⇔ uv⊥
GG
ta cÇn cã mp + nq = 0.
C©u IVb.
1) Gäi α lµ gãc t¹o bëi mÆt ph¼ng (BDM) víi ®¸y. §Ó x¸c ®Þnh α,
kÎ AK ⊥ BD. Theo ®Þnh lÝ ba ®−êng vu«ng gãc, MK ⊥ BD,
vËy
n
AKMα= . V× 22222
11111
AK AB AD a b
=+=+
nªn 22
ab
AK
ab
=
+
,
22
AM x a b
tg AK ab
+
α= =
T−¬ng tù, nÕu β lµ gãc t¹o bëi mÆt ph¼ng (BDN) víi ®¸y,
th×
22
ya b
tg ab
+
β=
§Ó c¸c mÆt ph¼ng (BDM) vµ (BDN) vu«ng gãc víi nhau, ®iÒu kiÖn cÇn vµ ®ñ lµ o
90α+β= hay
22
22
xy(a b )
1tgtg
ab
+
=αβ= ⇒
22
22
ab
xy
ab
=+.
2) Tõ gi¶ thiÕt suy ra MK ⊥ (BDN), vËy BDMN
1
VV MK.dt(BDN)
3
== .
Ta cã
22 22 2 2 2
2222
22 22
ab ab x(a b)
MK AM AK x
ab ab
++
=+=+ =
++
, dt(BDC)
dt(BDN) cos
=
β
,
mµ
22 2 22 22 2
2
22222
1 y(a b) ab y(a b)
1tg 1
cos a b a b
+++
=+ β=+ =
β
vËy dt (BDN) 22 2 2 2
1ab y(a b)
2
=++
, thµnh thö :

