A

+

AB AC < BC < AB + AC

AB BC < AC < AB + BC

TAM

B

C

AC BC < AB < AC + BC

A

+ nhau. TAM + nhau. + AB = AC

+

mang + - -

B

C

+

+ AB = AC = BC nhau.

A

TAM +

0.

nhau. 0.

+

C

B

0

C

0

TAM

1)2

2)2

3)2

+ + + BC2 = AB2 + AC2 +

A

+

B

C

0.

TAM + +

450

+ AB = AC + + + BC2 = AB2 + AC2

A

B

+ AM = BC :

1/ 2/ 3/

A

A

E

F

G

TRUNG

B

C

D

B

C

M

BM = MC = BC : 2 Trong

AG BG CG AD BE CF

2 3

ABC.

ABC

1/ 2/ 3/

A

A

K

L

H

B

C

H

CAO

C

B

I

d

Trong AH

ABC

ABC.

4/ 5/

A

B

H

C

H

B

C

A

AH

B

AB, AC

1/ 2/ 3/

A

A

d

O

TRUNG

d

C

C

M

B

B

MB = MC

Trong trung tr

: OA = OB = OC ABC

ABC.

2/ 3/ 1/

A

A

L

M

I

K

B

C

B

C

D

Trong ABC, ba Tia Oz

IK = IL = IM ABC.

ABC.

c

2

A

+ +

3

1

+

4

a

+

2

3

+ +

1 B

4

b

+ +

c

c

a

a

a

b

c

b

b

a

/ /

c

. a // b

b

/ /

c

a c

a a / / b c b c

b

c

/ /a b

/ /a b

Suy ra: + + +

B

A

. 1/

D

C

A

B

1/ AB // DC.

THANG . 2/

D

C

A

B

1/ AB // DC.

THANG . 2/

C

D

.

1/ AB // DC.

A

B

2/ AD = BC.

THANG . 3/

. 4/

D

C

5/ AC = BD.

1/

2/

A

B

3/

I

4/

C

D

5/

1/

A

B

. 2/ 3/

I

4/ AC = BD.

C

D

5/ IA = IC = ID = IB.

B

1/ 2/ AB = BC = CD = DA. 3/ 4/

THOI

A

C

I

5/ 6/ BD 7/

D

1/

A

B

2

1

2

2/ AB = BC = CD = DA. . 3/

1 450

4/ AC = BD.

I

5/ IA = IC = ID = IB.

6/ BD

1

2

2

1

7/

D

C

a

h

b

a

h

h

h

a

b

a

a

S

a h .

a h .

S

a b h .

Hthang

HBHS

1 2

1 2

a

d1

d1

a

d2

d2

b

2

S

S

a b .

Hthoi

d d . 1

2

d d . 1

2

HCNS

S

a

Hvuông

1 2

1 2

a/ a/

A

B

A

MA MB

MA MD NB NC

NA NB

N

M

M

N

ABC. ABCD.

B

C

C

D

b/ b/

A

B

A

ABC. thang ABCD. MN // BC

N

M

N

M

AB CD

1 2

BC v MN = MN // AB // CD 1 2

C

D

B

C

c/ thang ABCD, c/

A

B

A

MA MD

N

M

MA MB MN / / BC

M

N

MN

/ / AB/ / CD

C

D

C

B

a/ b/

A

B

A

B

I

I

IA = IB

b/ a/

d

C

D

d

K

M

1 2

A

B

MA MB

I

A

NA NB

B

I

1

1

A

B

I

2

2

:

1

2

N

AC B D

D A AB C BC / / D

a/

b/

N

M

MN // BC AM AN MN BC AC AB

A

B

C

MN // BC AMN ABC

A

x

ABC AE

A

C

B

M

C

E

B

D

AB DB EB AC DC EC

AM = BC : 2

A

k

ABC DEF theo ABC = DEF

h1

C

B

ABC

k

D

DEF

2

ABC

h2

k

h 1 h 2 Chuvi Chuvi S S

DEF

F

E

D

A

AB DE AC DF BC EF

(c.c.c) AB DE DF

C

B

AC BC F E (c.c.c)

E

F

D

A

(c.g.c) (c.g.c)

C

B

E

F

D

A

(g.g) (g.c.g)

C

B

E

F

4/

D

A

D

A

BC E F

AB DE

B

BC EF AB DE (ch-cgv)

C

E

E

B

F

C

F

A

D

D

A

B

(ch-gn)

C

E

B

E

C

F

F

cgv1

cgv2

cao

hc2

hc1

< tan ; cos < 1. <

ch

+ 0 < sin + CM: sin cot

trong

1/ sin =

+ = 900 cao trong 1/ (cgv1)2 = hc1 . ch (cgv2)2 = hc2 . ch 2/ cos =

2

2

2

1 cao

(

)

(

)

1 cgv 1

2

sin = cos 3/ tan = 4/ cos = sin 2/ cao2 = hc1 . hc2 3/ cao . ch = cgv1 . cgv2 1 cgv 4/ cot =

2

1

2

1

2

tan = cot

1 sin tan

sin tan

;cos ; cot

cos cot

1

2

1

2

cot = tan ch2 = (cgv1)2 + (cgv2)2

ch = hc1 + hc2

1/ tan

sin cos

300 450 600

3 /2

2 /2

2 / cot

1/2 sin

cos sin

3 /2

2 /2

1/2 cos

3

3 /3

4 / tan .cot

1

1 tan

3

3 /3

1 cot

cgv1

cgv2

) ) 3) cgv1 = cgv2

2) cgv = ch . 4) cgv1 = cgv2

ABC

(hay

Hay (O)

.

ABC

ABC

-

ABC

ABC -

ABC

-

A

m K trong

ABC

-

D

B

C

E

F

K

C)

.

-

MN

qua trung

OA

(O)

d

AB = AC

nhau

chung.

B

AB = AC

A

B

IB = IC

O

A

OA

I

C

D

C

cung

M

A

O

O

O

B

B

x

B

A

A

1 2

1 2

= = ) ) )

M

N

M

M

M

O

O

O

B

B

A

B

A

O

N

D

B

A

C

A

1 2

=

(O)) ) )

1 2

=

M

O

A

)

A

O

)

x

x

B

)

B

1 2

=

D

= )

O

1 2

B

C

M

A

B

B

m

= - )

A

O

C

O

M

1 2

n

C

D

O

D

A

D

A

B

1 2

1 2

0.

- = ) = - )

T

B

2

1

A

H

2

1

.

1

2

2

G

1

C

D

B

(BCx

0

R, cung n0

R

A

R2

C =

R

R

S

O

n0

O

l

n0

O

S

l

2nR 360 lR 2

C = d

B

2R

S =

Rn 180

1/

a b

c d

a c b d

a d .

b c .

2 /

a b

c d

a b b

c d d

6/ A3 + B3 = (A + B)(A2 AB + B2) 7/ A3 B3 = (A B)(A2 + AB + B2) 1/ (A + B)2 = A2 + 2AB + B2 2/ (A B)2 = A2 2AB + B2 3/ A2 B2 = (A B)(A + B)

6*/ A3 + B3 = (A + B)3 3AB(A + B) 7*/ A3 B3 = (A B)3 + 3AB(A B) 4/ (A + B)3 = A3 + 3A2B + 3AB2 + B3 5/ (A B)3 = A3 3A2B + 3AB2 B3

c 1/ ax by a x b y ' ' c ' b b ' a a ' (d): y = ax + b (a 0)

c 2/ ax by a x b y ' ' c ' c c ' a a ' b b ' (d)

a c 3/ ax by a x b y ' ' c ' a a ' b b ' c c ' (d) -1

2 A

2/ 1/

xA )( )( xB

2

2

A A A B(x) 0

)(xA

A

A

AA .

A

A(x) 0

A B .

A B .

xA )( xB )(

B(x) > 0 0; B 0)

2

A

B

BA

B A

0 BhayA

B

B

0(

hayA

0)

A

B

2A B

A B

2/ ( A 0, B > 0) A B A B

A B

B

0

BA

2

BA

0)

A B

2 A B

A

0

A

B

0

( A 0)

A B

2 A B

B

0

( A < 0)

4/ 0 5/

A m. n .A

m n A

m A . A A .

n .

a

a

a a .

a

a

.

a

1

A A A A A . A a .a a 2 a 2:

m

B

a b b a

ab

a

b

. Am 2 A

B

A

B

2

2

3:

a b

a

b

a

b

a

b

m . Am B

2

BA A B

a b

2

ab

a

b

4:

3

3

a

1

a

3

3

1

a

a 1 a a a 1 a a 1 a a a b b a b a b a ab b

aa a

a

3

3

abba

ab

a

b

ab

a a b b

a

b

a

b a

ab b

a

b

a

b

a a b b a b a b a ab b

2/ 3/

2 + bx + c = 0 (a

1/ b: ax2 + c = 0 (a 0) 0):

ax2 + bx = 0 (a 0) x2 = c a x(ax + b) = 0

b

x 0 ax b

0

x 2

2

a

x

0

x

c a

b a

> 0 x2 > 0 b ; x 1 2 a

x 1

x 2

b a

2

0;

2 < 0

b a

= 0

1, x2

x 1

x 2

b a

< 0

. xx 1 2

c a

ax2 + bx + c = 0 (a

3/ 1/ 2/

x1

2:

1 + x2

a + b + c = 0 2 + bx + c = 0 (a a b + c = 0 2 + bx + c = 0 (a

1 . x2

c a

2 Sx + P = 0

x1 = 1, x2 = x1 = 1, x2 = c a

2

2

2

2

x 1

x 2

x x 1 2

1

2

4/ 5/ ax2

x x

3

3

3

3

x 1

x 2

x x 1 2

x 1

x 2

1

2

x x

2

2

4

4

2

2

0: .

2 x 1

x 2

x x 1 2

2

1

2

> 0

= 0

x x 2 x 1

x 2

2

2

2

2 x 1

x 2

x x 1 2

2

1

< 0

2

0

x x 2 x 1

x 2

2

2

a.c < 0

2

x 1

x 2

x 1

x 2

2 x 1

x 2

x x 1 2

0

2

2 x 1

x 2

0

0

P

0P

1; x2:

0

S

0

1 + x2

1 . x2

0

P

0

S

+

2

7/

4 + bx2 + c = 0

2 = t

0) 2 = bx + c (*) (a 0)

0

2 + bt + c = 0

< 0 at2 + bt + c = 0

2 = t

= 0 t 0.

> 0 t t =