Luận văn Thạc sĩ Kinh tế: Vận dụng mô hình Logistic và Neural Network trong xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công thương Việt Nam
lượt xem 7
download
Đề tài đánh giá thực trạng XHTD khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam; ứng dụng mô hình Logistic và Neural Network đo lường xác suất vỡ nợ, xác định ngưỡng xác suất (cut-off point) tương ứng với từng hạng khách hàng, từ đó giúp ngân hàng phân loại được doanh nghiệp đang thuộc vùng an toàn hay vùng cảnh báo để chủ động trong công tác quyết định cấp tín dụng... Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn Thạc sĩ Kinh tế: Vận dụng mô hình Logistic và Neural Network trong xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công thương Việt Nam
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC KINH TẾ TP. HỒ CHÍ MINH THÁI THỊ TRANG VẬN DỤNG MÔ HÌNH LOGISTIC VÀ NEURAL NETWORK TRONG XẾP HẠNG TÍN DỤNG DOANH NGHIỆP TẠI NGÂN HÀNG TMCP CÔNG THƢƠNG VIỆT NAM Chuyên ngành : Tài chính – Ngân hàng Mã số : 60340201 LUẬN VĂN THẠC SĨ KINH TẾ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. TRẦN PHƢƠNG THẢO TP. Hồ Chí Minh-Năm 2016
- LỜI CAM ĐOAN Tôi xin cam đoan rằng đây là công trình nghiên cứu của tôi, có sự hướng dẫn của TS. Trần Phương Thảo. Nội dung luận văn được trình bày trong phạm vi hiểu biết của tôi, có tham khảo và sử dụng thông tin, dữ liệu được đăng tải trên các tài liệu tiếng Việt, tiếng Anh theo danh mục tài liệu tham khảo. Tôi xin chịu trách nhiệm hoàn toàn về lời cam đoan của mình. TPHCM, ngày 25 tháng 10 năm 2016 Người cam đoan Thái Thị Trang
- MỤC LỤC TRANG PHỤ BÌA LỜI CAM ĐOAN MỤC LỤC DANH MỤC CÁC TỪ VIẾT TẮT DANH MỤC CÁC BẢNG BIỂU DANH MỤC CÁC HÌNH VẼ CHƢƠNG 1: GIỚI THIỆU TỔNG QUAN NGHIÊN CỨU ................................. 1 1.1 Lý do chọn đề tài .......................................................................................... 1 1.2 Mục tiêu nghiên cứu .................................................................................... 2 1.3 Đối tƣợng và phạm vi nghiên cứu .............................................................. 2 1.4 Phƣơng pháp nghiên cứu ............................................................................ 2 1.5 Kết cấu đề tài................................................................................................ 3 CHƢƠNG 2: TỔNG QUAN VỀ XẾP HẠNG TÍN DỤNG KHÁCH HÀNG DOANH NGHIỆP TẠI NGÂN HÀNG THƢƠNG MẠI ....................................... 4 2.1 Cơ sở lý luận về xếp hạng tín dụng tại ngân hàng thƣơng mại ............... 4 2.1.1 Khái niệm xếp hạng tín dụng ..................................................................... 4 2.1.2 Vai trò của xếp hạng tín dụng doanh nghiệp ............................................ 5 2.1.3 Nguyên tắc xếp hạng tín dụng .................................................................... 7 2.2 Mô hình xếp hạng tín dụng doanh nghiệp tại Trung tâm thông tin tín dụng của Ngân hàng Nhà Nƣớc Việt Nam (CIC) ................................................... 8 2.3 Tổng quan các nghiên cứu về xếp hạng tín dụng khách hàng doanh nghiệp ..................................................................................................................... 10 KẾT LUẬN CHƢƠNG 2 ........................................................................................ 17 CHƢƠNG 3: THỰC TRẠNG XẾP HẠNG TÍN DỤNG KHÁCH HÀNG DOANH NGHIỆP TẠI NGÂN HÀNG TMCP CÔNG THƢƠNG VIỆT NAM18 3.1 Giới thiệu về Ngân hàng TMCP Công Thƣơng Việt Nam .................... 18 3.1.1 Lịch sử hình thành và phát triển .............................................................. 18 3.1.2 Tình hình hoạt động kinh doanh .............................................................. 19 3.2 Thực trạng xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thƣơng Việt Nam ............................................................................. 22 3.2.1 Quy trình chấm điểm xếp hạng tín dụng khách hàng doanh nghiệp ... 22
- 3.2.2 Nội dung chấm điểm xếp hạng tín dụng khách hàng doanh nghiệp..... 25 3.3 Đánh giá xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thƣơng Việt Nam ............................................................................. 31 3.3.1 Những kết quả đạt đƣợc ........................................................................... 31 3.3.2 Những mặt hạn chế.................................................................................... 33 KẾT LUẬN CHƢƠNG 3 ........................................................................................ 36 CHƢƠNG 4: VẬN DỤNG MÔ HÌNH LOGISTIC VÀ NEURAL NETWORK TRONG XẾP HẠNG TÍN DỤNG KHÁCH HÀNG DOANH NGHIỆP TẠI NGÂN HÀNG TMCP CÔNG THƢƠNG VIỆT NAM ........................................ 37 4.1 Dữ liệu nghiên cứu ..................................................................................... 37 4.1.1 Thu thập dữ liệu ........................................................................................ 37 4.1.2 Xử lý dữ liệu ............................................................................................... 38 4.2 Phƣơng pháp nghiên cứu .......................................................................... 39 4.3 Kết quả nghiên cứu.................................................................................... 43 4.3.1 Thống kê mô tả dữ liệu.............................................................................. 43 4.3.2 Kết quả ƣớc lƣợng ..................................................................................... 46 4.3.3 Kiểm định mức độ dự báo chính xác của mô hình ................................. 51 KẾT LUẬN CHƢƠNG 4 ........................................................................................ 54 CHƢƠNG 5: KẾT LUẬN VÀ KIẾN NGHỊ NHẰM ỨNG DỤNG HIỆU QUẢ MÔ HÌNH VÀO XẾP HẠNG TÍN DỤNG KHÁCH HÀNG DOANH NGHIỆP TẠI NGÂN HÀNG TMCP CÔNG THƢƠNG VIỆT NAM................................ 56 5.1 Kết luận ...................................................................................................... 56 5.2 Kiến nghị đối với Ngân hàng TMCP Công Thƣơng Việt Nam ............. 57 5.2.1 Nghiên cứu vận dụng kết hợp mô hình Logistic và Neural Network trong xếp hạng tín dụng .......................................................................................... 57 5.2.2 Nâng cao chất lƣợng thu thập và xử lý thông tin ................................... 60 5.2.3 Nâng cao nhận thức và tăng cƣờng công tác đào tạo cán bộ ................. 61 5.2.4 Kiểm tra giám sát công tác chấm điểm ................................................... 61 5.3 Kiến nghị đối với các bên có liên quan .................................................... 62 5.4 Hạn chế và gợi ý hƣớng nghiên cứu tiếp theo ......................................... 63 KẾT LUẬN CHƢƠNG 5 ........................................................................................ 65 DANH MỤC TÀI LIỆU THAM KHẢO PHỤ LỤC
- DANH MỤC CÁC TỪ VIẾT TẮT - BCTC Báo cáo tài chính - CIC Trung tâm Thông tin tín dụng - NHNN Ngân hàng Nhà nước Việt Nam - NHTM Ngân hàng thương mại - TCTD Tổ chức tín dụng - TMCP Thương mại cổ phần - VietinBank Ngân hàng Thương Mại Cổ phần Công Thương Việt Nam - XHTD Xếp hạng tín dụng
- DANH MỤC CÁC BẢNG BIỂU Bảng 2.1: Tóm tắt các nghiên cứu về ứng dụng mô hình trong XHTD.................... 10 Bảng 3.1: Một số chỉ tiêu tài chính cơ bản của VietinBank giai đoạn 2011-2015 ... 19 Bảng 3.2: Danh mục các chỉ tiêu tài chính trong XHTD khách hàng doanh nghiệp tại VietinBank ........................................................................................................... 28 Bảng 3.3: Điểm trọng số các chỉ tiêu phi tài chính trong XHTD khách hàng doanh nghiệp tại VietinBank ............................................................................................... 29 Bảng 3.4: Điểm trọng số các chỉ tiêu trong XHTD khách hàng doanh nghiệp tại VietinBank ................................................................................................................ 30 Bảng 3.5: Bảng điểm tín dụng trong XHTD khách hàng doanh nghiệp tại VietinBank ............................................................................................................... .30 Bảng 4.1: Tóm tắt các biến độc lập trong mô hình hồi quy Logistic ........................ 38 Bảng 4.2: Tính toán giá trị Specifity và Sensitivity .................................................. 43 Bảng 4.3: Thống kê mô tả các biến độc lập .............................................................. 43 Bảng 4.4: Ma trận hệ số tương quan giữa các biến độc lập ...................................... 45 Bảng 4.5. Kết quả ước lượng mô hình Logistic với đầy đủ các biến số ................... 46 Bảng 4.6: Kiểm định Wald Test biến X2, X9 .......................................................... 46 Bảng 4.7. Kết quả ước lượng mô hình Logistic sau khi loại trừ X2, X9 .................. 47 Bảng 4.8: Kiểm định Wald Test biến X7, X8 .......................................................... 47 Bảng 4.9: Kết quả ước lượng mô hình Logistic sau khi loại trừ X7, X8 .................. 48 Bảng 4.10: Kết quả tính Specifity và Sensitivity tại các ngưỡng xác suất ............... 49
- Bảng 4.11: Kết quả dự báo của mô hình Neural Network ........................................ 52 Bảng 4.12: Kết quả đánh giá trọng số các biến trong mô hình Neural Network ...... 53 Bảng 5.1: Mô tả xếp hạng dựa trên xác suất vỡ nợ của khách hàng ......................... 58
- DANH MỤC CÁC HÌNH VẼ Hình 4.1: Mô hình Neural Network dự báo xác suất không thanh toán nợ ............. 42 Hình 4.2: Ngưỡng xác suất tối ưu trong dự báo xác suất vỡ nợ ............................... 51 Hình 4.3: Biểu đồ ROC ............................................................................................. 53
- 1 CHƢƠNG 1: GIỚI THIỆU TỔNG QUAN NGHIÊN CỨU 1.1 Lý do chọn đề tài Hoạt động tín dụng của các Ngân hàng thương mại (NHTM) được đánh giá là hoạt động truyền thống mang lại nguồn thu nhập chính trong cơ cấu tổng thu nhập hiện nay. Điều tất yếu đặt ra là mỗi NHTM cần xây dựng những biện pháp quản trị rủi ro tín dụng, một trong những công cụ đó chính là hệ thống chấm điểm và xếp hạng tín dụng nội bộ nhằm dự báo khả năng trả nợ của khách hàng và đưa ra quyết định cho vay. Kết quả của xếp hạng tín dụng (XHTD) có ý nghĩa quan trọng đối với tổ chức cho vay và cả chủ thể được xếp hạng. Chính vì thế, cũng như các NHTM khác ở Việt Nam, Ngân hàng Thương Mại Cổ Phần (TMCP) Công Thương Việt Nam đã xây dựng và triển khai mô hình xếp hạng tín dụng nội bộ trên toàn hệ thống từ năm 2006. Trong các nghiên cứu ứng dụng tại nhiều nước trên thế giới trong lĩnh vực XHTD doanh nghiệp, mô hình Logistic và Neural Network cho kết quả dự báo xác suất vỡ nợ tốt nhất, hỗ trợ quyết định cho vay. Tại Việt Nam, việc vận dụng mô hình Logistic và Neural Network hiện được nghiên cứu trong dự báo thị trường chứng khoán, lạm phát mà chưa được áp dụng rộng rãi trong XHTD. Thêm vào đó, các NHTM hiện xây dựng hệ thống XHTD theo quy trình, tiêu chí đánh giá mà chưa vận dụng và phát huy hết vai trò của các công cụ dự báo định lượng. Do đó, việc áp dụng thêm hai mô hình này là cần thiết, nhằm gia tăng tính chính xác trong dự báo, có ý nghĩa tham khảo khi đánh giá sơ bộ một khách hàng trước khi tiến hành thẩm định chi tiết, giảm thiểu chi phí thẩm định, hỗ trợ cho việc ra quyết định cấp tín dụng bên cạnh hệ thống XHTD đã có, giảm bớt sự can thiệp mang tính chủ quan để đánh giá mức độ rủi ro, cho phép ngân hàng chủ động trong việc lựa chọn khách hàng và xây dựng chính sách trong hoạt động cấp tín dụng một cách hợp lý. Xuất phát từ thực tiễn như trên, tôi xin chọn đề tài “Vận dụng mô hình Logistic và Neural Network trong xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thƣơng Việt Nam” làm luận văn nghiên cứu.
- 2 1.2 Mục tiêu nghiên cứu Nghiên cứu nhằm đạt được các mục tiêu sau: - Đánh giá thực trạng XHTD khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam. - Ứng dụng mô hình Logistic và Neural Network đo lường xác suất vỡ nợ, xác định ngưỡng xác suất (cut-off point) tương ứng với từng hạng khách hàng, từ đó giúp ngân hàng phân loại được doanh nghiệp đang thuộc vùng an toàn hay vùng cảnh báo để chủ động trong công tác quyết định cấp tín dụng. - Vận dụng kết quả nghiên cứu để đề xuất những giải pháp ứng dụng vào mô hình XHTD khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam. 1.3 Đối tƣợng và phạm vi nghiên cứu - Đối tượng nghiên cứu: mô hình xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam - Phạm vi nghiên cứu: Nguồn dữ liệu từ báo cáo tài chính của khách hàng doanh nghiệp có quan hệ tín dụng tại Ngân hàng TMCP Công Thương Việt Nam từ năm 2011 – 2015. 1.4 Phƣơng pháp nghiên cứu - Luận văn tiếp cận các cơ sở lý thuyết và mô hình chấm điểm xếp hạng tín dụng khách hàng doanh nghiệp thông qua các nghiên cứu trong nước và trên thế giới. - Nghiên cứu thực nghiệm thông qua phương pháp thống kê, so sánh, tổng hợp các số liệu, phân tích thực trạng, từ đó đưa ra những kiến nghị nhằm nâng cao hiệu quả trong công tác chấm điểm xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam. - Xử lý số liệu cho mô hình hồi quy Logistic và Neural Network với sự hỗ trợ của phần mềm Stata và SPSS, ứng dụng kết quả nghiên cứu tính xác suất vỡ nợ của khách hàng đồng thời xác định ngưỡng xác suất hỗ trợ việc ra quyết định cho vay,
- 3 từ đó đề xuất sử dụng mô hình trong chấm điểm xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam. 1.5 Kết cấu đề tài Để thực hiện các mục tiêu trên, nghiên cứu được chia thành 5 chương với những nội dung như sau: Chương 1: Giới thiệu tổng quan nghiên cứu Chương 2: Tổng quan về xếp hạng tín dụng khách hàng doanh nghiệp tại ngân hàng thương mại Chương 3: Thực trạng xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam Chương 4: Vận dụng mô hình Logistic và Neural Network trong xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam Chương 5: Kết luận và kiến nghị nhằm ứng dụng hiệu quả mô hình vào xếp hạng tín dụng khách hàng doanh nghiệp tại Ngân hàng TMCP Công Thương Việt Nam
- 4 CHƢƠNG 2: TỔNG QUAN VỀ XẾP HẠNG TÍN DỤNG KHÁCH HÀNG DOANH NGHIỆP TẠI NGÂN HÀNG THƢƠNG MẠI 2.1 Cơ sở lý luận về xếp hạng tín dụng tại ngân hàng thƣơng mại 2.1.1 Khái niệm xếp hạng tín dụng Thuật ngữ XHTD được sử dụng để chỉ việc thực hiện đánh giá, xếp hạng khách hàng vay vốn tại các tổ chức tín dụng. Tại Việt Nam, thuật ngữ này có thể được dịch và sử dụng với nhiều nghĩa khác nhau như xếp hạng tín nhiệm doanh nghiệp, xếp hạng tín dụng doanh nghiệp, xếp loại doanh nghiệp, chấm điểm tín dụng doanh nghiệp, xếp hạng khách hàng,…Trong nghiên cứu này, tác giả sử dụng thuật ngữ “Xếp hạng tín dụng”. XHTD là những ý kiến đánh giá hiện tại về rủi ro tín dụng, chất lượng tín dụng, khả năng và thiện ý của chủ thể đi vay trong việc đáp ứng các nghĩa vụ tài chính một cách đầy đủ và đúng hạn (Standard & Poor, 2006). Theo Moody's (2016), XHTD là những ý kiến đánh giá về chất lượng tín dụng và khả năng thanh toán nợ của chủ thể đi vay dựa trên những phân tích tín dụng cơ bản và biểu hiện thông qua hệ thống ký hiệu từ Aaa đến C. Với quan điểm của Fitch (2014) thì xếp hạng tín dụng là đánh giá mức độ khả năng thực hiện các nghĩa vụ nợ như lãi suất, cổ tức ưu đãi, các khoản bảo hiểm hay các khoản phải trả khác của một tổ chức. Phương pháp xếp hạng tín dụng của Fitch là sự kết hợp của cả yếu tố tài chính và phi tài chính. Vì vậy, chỉ số đánh giá còn cho thấy khả năng sinh lợi tương lai của tổ chức được đánh giá. Đứng trên góc độ ngân hàng, xếp hạng tín dụng được hiểu là những ý kiến đánh giá về rủi ro tín dụng và chất lượng tín dụng thông qua hệ thống xếp hạng nhằm thể hiện khả năng trả nợ của đối tượng được cấp tín dụng để đáp ứng các nghĩa vụ tài chính một cách đầy đủ và đúng hạn (Nguyễn Đức Hưởng, 2012). Như vậy, XHTD là quá trình thu thập, xử lý và đánh giá chất lượng thông tin khách hàng nhằm mục tiêu hạn chế rủi ro tín dụng. Mức độ rủi ro tín dụng thay đổi theo từng đối tượng khách hàng và được xác định bằng thang điểm, dựa vào các thông tin tài chính và phi tài chính có sẵn tại thời điểm xếp hạng. Thông qua quá
- 5 trình này, NHTM có thể đánh giá được bản chất hoạt động kinh doanh cả về nguồn lực, tiềm năng, lợi thế kinh doanh cũng như những rủi ro tiềm ẩn về khả năng trả nợ của doanh nghiệp để có thể đưa ra quyết định cho vay, chính sách ưu đãi phù hợp, ngăn ngừa kiểm soát rủi ro trong hoạt động tín dụng. 2.1.2 Vai trò của xếp hạng tín dụng doanh nghiệp Đối với ngân hàng thƣơng mại Nhu cầu về sử dụng kết quả XHTD của các tổ chức tín dụng (TCTD) ngày càng nhiều, cho thấy được vai trò quan trọng của XHTD trong việc phòng ngừa rủi ro tín dụng ngân hàng. Cụ thể, XHTD là cơ sở cho việc lựa chọn khách hàng cho vay bởi thông qua việc đánh giá mức độ tín nhiệm của khách hàng vay vốn, đo lường mức độ rủi ro tín dụng, khả năng trả nợ của doanh nghiệp, TCTD sẽ đưa ra quyết định cho vay hiệu quả nhất (Nguyễn Đức Hưởng, 2012). Đồng thời, kết quả XHTD cũng là cơ sở để xây dựng chính sách tín dụng, danh mục tín dụng, bởi thông qua kết quả xếp hạng TCTD sẽ phân loại khách hàng theo từng tiêu chí như ngành nghề kinh doanh, quy mô, địa bàn hoạt động, mức độ rủi ro để từ đó xây dựng danh mục tín dụng cho từng thời kỳ, đồng thời có các biện pháp kiểm soát chặt chẽ đối với những khoản vay có xếp hạng thấp để hạn chế rủi ro xảy ra. Hệ thống XHTD của NHTM cung cấp những dự đoán về khả năng xảy ra rủi ro tín dụng của khách hàng vay, là công cụ giúp NHTM quản trị rủi ro tín dụng, kiểm soát mức độ tín nhiệm khách hàng, thiết lập mức lãi suất cho vay phù hợp tương ứng với dự báo mức độ rủi ro của từng nhóm khách hàng. NHTM có thể đánh giá hiệu quả danh mục cho vay thông qua giám sát sự thay đổi dư nợ và phân loại nợ trong từng nhóm khách hàng đã được xếp hạng, qua đó điều chỉnh danh mục theo hướng ưu tiên nguồn lực vào những nhóm khách hàng an toàn. Cụ thể hơn, kết quả XHTD được ứng dụng vào: - Hỗ trợ phê duyệt tín dụng: Cải thiện tính chính xác và hiệu lực của việc ra quyết định cấp tín dụng, cung cấp phương tiện hỗ trợ để quá trình này trở nên hiệu quả, tiết kiệm thời gian, chi phí và giảm bớt sự can thiệp từ con người.
- 6 - Thực hiện quản trị rủi ro tín dụng: XHTD nội bộ là một công cụ để đánh giá mức rủi ro của khách hàng. Nhờ tích hợp các nguyên tắc, khung chính sách và tiêu chuẩn tín dụng căn bản của ngân hàng, hệ thống XHTD là căn cứ độc lập để NHTM đánh giá hiệu quả quá trình quản trị rủi ro của các bộ phận liên quan, bảo đảm việc cấp tín dụng được quản lý phù hợp, các tài sản có rủi ro tín dụng nằm trong giới hạn, thống nhất với các tiêu chuẩn thận trọng và khả năng phát hiện rủi ro sớm. - Hỗ trợ xác định lãi suất cho khoản tín dụng: Mức lãi suất áp dụng đối với từng khách hàng phải phù hợp, đảm bảo có lợi nhuận và đủ để bồi hoàn tổn thất tín dụng. XHTD phân loại các mức độ rủi ro và là một trong những căn cứ tin cậy để xác định lãi suất cho các khoản tín dụng, theo nguyên tắc mức XHTD thấp (rủi ro cao) có mức lãi suất cao và ngược lại. - Hỗ trợ quản lý và giám sát khách hàng: Việc XHTD làm cơ sở cho việc phân loại và giám sát danh mục tín dụng, xác định khi nào cần có sự giám sát hoặc có các hoạt động điều chỉnh khoản tín dụng phù hợp. Cụ thể, những khoản vay có mức XHTD thấp, rủi ro cao cần phải được chú trọng theo dõi, kiểm soát, đánh giá thường xuyên. Ngược lại, những khách hàng tốt với mức XHTD cao sẽ được ưu đãi hơn trong các quan hệ giao dịch. Đối với nhà đầu tƣ Quá trình XHTD sẽ căn cứ vào các chỉ tiêu tài chính của các báo cáo tài chính và chỉ tiêu phi tài chính như quản trị điều hành, cơ cấu tổ chức của doanh nghiệp từ đó đánh giá được tiềm năng sinh lợi, mức độ an toàn vốn khi đầu tư vào một doanh nghiệp. Kết quả XHTD giúp nhà đầu tư có thêm công cụ đánh giá rủi ro tín dụng, giảm thiểu chi phí thu thập, phân tích, giám sát khả năng trả nợ của các tổ chức phát hành công cụ nợ, từ đó đưa ra các quyết định đầu tư hợp lý. Đối với doanh nghiệp Các doanh nghiệp có kết quả XHTD tốt sẽ tạo được lòng tin đối với nhà đầu tư, giúp các công ty mở rộng thị trường vốn trong và ngoài nước, giúp duy trì sự ổn định nguồn tài trợ. Những công ty được xếp hạng cao dễ dàng quảng bá hình ảnh, nâng cao thương hiệu của mình khi phát hành trái phiếu, từ đó duy trì được nguồn
- 7 vốn trong nhiều hoàn cảnh. XHTD càng cao thì chi phí vay càng thấp, các nhà đầu tư sẵn sàng nhận một mức lãi suất thấp hơn cho một chứng khoán an toàn. Đối với Chính phủ và thị trƣờng tài chính Kết quả xếp hạng tín dụng là công cụ giúp các ngân hàng quản trị rủi ro từ đó tăng trưởng tín dụng bền vững, đảm bảo sự thông suốt của thị trường tài chính trong nước. XHTD cung cấp tín hiệu để cảnh báo rủi ro trong hoạt động và triển vọng phát triển của các doanh nghiệp, giúp thị trường tài chính minh bạch hơn, nâng cao hiệu quả của nền kinh tế và tăng cường khả năng giám sát thị trường của Chính phủ. Trong điều kiện hội nhập với thị trường kinh tế thế giới, việc minh bạch hóa thông tin tín nhiệm sẽ tạo được lòng tin đối với nhà đầu tư nước ngoài, giúp doanh nghiệp có cơ hội phát triển. 2.1.3 Nguyên tắc xếp hạng tín dụng Theo Trần Đắc Sinh (2002), XHTD được thực hiện dựa trên nguyên tắc chủ yếu bao gồm phân tích tín nhiệm trên cơ sở ý thức và thiện chí trả nợ của khách hàng trong lịch sử, đánh giá tiềm năng trả nợ thông qua đo lường năng lực tài chính của khách hàng, từ đó đánh giá rủi ro toàn diện và thống nhất dựa vào hệ thống ký hiệu xếp hạng. Trong phân tích xếp hạng tín dụng cũng cần chú ý đến phân tích định tính để bổ sung cho những thiếu sót của phân tích định lượng. Các chỉ tiêu phân tích có thể thay đổi phù hợp với yếu tố môi trường chung. Việc XHTD được thực hiện dựa trên những nguyên tắc cơ bản như sau: - Phân tích dựa trên các yếu tố định tính và định lượng: + Các chỉ tiêu định lượng là những chỉ tiêu đo lường bằng con số cụ thể như các chỉ tiêu khả năng thanh toán, tỷ suất sinh lợi, P/E… + Các chỉ tiêu định tính là những quan sát không đo lường được bằng số, như vị thế cạnh tranh, môi trường chính trị, môi trường kinh tế, văn hóa… - Việc phân tích được tiến hành bằng phương pháp trên - xuống theo trình tự như sau:
- 8 + Phân tích các yếu tố mang tính chất vĩ mô về xu hướng quốc gia, ngành như tốc độ tăng trưởng kinh tế của quốc gia, sự ổn định về chính trị, chính sách tài chính, sự mở cửa thị trường, … + Phân tích rủi ro trong hoạt động kinh doanh như tình hình cạnh tranh, xu hướng thị trường, vị thế kinh doanh,… Phân tích những chỉ tiêu này nhằm phản ánh năng lực cạnh tranh đối với các đối thủ tiềm năng, sản phẩm thay thế, nhà cung ứng, khách hàng và những đối thủ cạnh tranh hiện tại trong ngành. + Phân tích tình hình tài chính gồm hàng loạt chỉ tiêu phụ thuộc vào từng ngành nghề, kết hợp so sánh giữa rủi ro tài chính và rủi ro kinh doanh, xem xét độ linh hoạt tài chính cũng như chính sách tài chính. + Phân tích hướng phát triển của công ty thông qua các kế hoạch và chiến lược kinh doanh. - Đơn giản, dễ hiểu, dễ so sánh: Xây dựng thang điểm cho các chỉ tiêu, tổng hợp và phản ánh qua các thứ hạng theo mẫu tự Latin. Hệ thống xếp hạng được chia thành 02 loại chính là xếp hạng nợ dài hạn và ngắn hạn, ngoài ra còn có các biểu tượng riêng cho công ty chứng khoán, bảo hiểm, ngân hàng,… 2.2 Mô hình xếp hạng tín dụng doanh nghiệp tại Trung tâm thông tin tín dụng của Ngân hàng Nhà Nƣớc Việt Nam (CIC) Trung tâm thông tin tín dụng (CIC) thực hiện xếp hạng tín nhiệm doanh nghiệp theo hướng dẫn của Ngân hàng Nhà nước Việt Nam (NHNN) nhằm tiến tới tiêu chuẩn hóa đánh giá các chỉ tiêu có thể áp dụng cho các NHTM trong nước, nhờ vào lượng lớn thông tin doanh nghiệp lưu trữ qua nhiều năm. NHNN đã xây dựng và định hướng khung chính sách theo các Quyết định số 493/2005/QĐ-NHNN ngày 22/04/2005, Quyết định số 18/2007/QĐ-NHNN ngày 25/04/2007 của Thống đốc ngân hàng nhà nước, quy định về việc phân loại nợ, trích lập và sử dụng dự phòng để xử lý rủi ro tín dụng trong hoạt động ngân hàng của tổ chức tín dụng và Quyết định số 1253/ QĐ-NHNN về việc thực hiện nghiệp vụ phân tích, xếp hạng tín dụng
- 9 doanh nghiệp. CIC thực hiện xếp hạng tín nhiệm các doanh nghiệp niêm yết trên thị trường chứng khoán hoặc doanh nghiệp thuộc mọi thành phần kinh tế có nhu cầu tự xếp hạng. Các doanh nghiệp được xếp hạng cũng được phân theo quy mô, nguồn vốn kinh tế, số lao động, doanh thu thuần, chỉ tiêu nộp ngân sách nhà nước. Ngoài ra, kết quả khảo sát tổng hợp các yếu tố: bảng cân đối kế toán, kết quả kinh doanh, tình hình dư nợ ngân hàng, các thông tin phi tài chính… cũng được coi là yếu tố quan trọng để đánh giá chất lượng tín dụng của doanh nghiệp. Kết quả đánh giá này chủ yếu được CIC đem cung cấp cho các TCTD làm cơ sở phục vụ việc cấp vốn của các tổ chức này. Các báo cáo tại CIC gồm có: Báo cáo quan hệ tín dụng, Báo cáo thông tin tài sản đảm bảo, Báo cáo thông tin thẻ tín dụng. Việc phân tích, xếp loại tín dụng doanh nghiệp được thực hiện tại Trung tâm Thông tin tín dụng dựa vào các chỉ tiêu tài chính và phi tài chính. Chỉ tiêu tài chính gồm 4 chỉ tiêu phân tích cơ bản: - Chỉ tiêu thanh khoản - Chỉ tiêu hoạt động - Chỉ tiêu cân nợ - Chỉ tiêu thu nhập Chỉ tiêu phi tài chính gồm: - Uy tín trong quan hệ với các TCTD - Thời gian hoạt động của doanh nghiệp - Trình độ quản lý - Môi trường kinh doanh - Lĩnh vực, ngành nghề hoạt động Tại Việt Nam, các NHTM hiện đang xây dựng hệ thống XHTD trên cơ sở khung chính sách định hướng của NHNN. Trên cơ sở quy trình, tiêu chí đánh giá xếp hạng tín nhiệm các doanh nghiệp niêm yết được áp dụng tại CIC, các ngân hàng sẽ xây dựng hệ thống XHTD riêng phụ thuộc vào quy mô, phạm vi hoạt động, tình
- 10 hình thực tế, đặc điểm kinh doanh và định hướng chính sách tín dụng trong từng thời kỳ. 2.3 Tổng quan các nghiên cứu về xếp hạng tín dụng khách hàng doanh nghiệp Để đánh giá mức độ tín nhiệm, các tổ chức tài chính trước đây thường sử dụng phương pháp chuyên gia trong hệ thống đánh giá rủi ro tín dụng của các doanh nghiệp. Dựa trên các thông tin, cơ sở dữ liệu trên thị trường của doanh nghiệp các chuyên gia tiến hành đánh giá, phối hợp những biến định danh và các biến định tính để đi đến việc đánh giá rủi ro tín dụng của khách hàng. Từ kết quả đánh giá này, các tổ chức sẽ quyết định việc cấp hay không cấp các khoản tín dụng. Tuy nhiên, nhìn chung phương pháp này phụ thuộc nhiều vào tính chủ quan của chuyên gia đánh giá. Để khắc phục những hạn chế của mô hình chấm điểm và nâng cao tính khách quan qua việc lượng hóa, hiện nay một số ngân hàng tiếp cận phương pháp xếp hạng tín dụng qua phương pháp định lượng, trong đó có mô hình điểm số Z-core, Logistic, Neural Network. Phân tích tìm một hàm tuyến tính của các biến tài chính và thị trường để có thể phân biệt một cách tốt nhất giữa hai lớp doanh nghiệp vỡ nợ và không vỡ nợ. Đã có rất nhiều công trình nghiên cứu chuyên sâu được công bố trên các tạp chí khoa học ứng dụng những mô hình trên để đo lường, xếp hạng tín dụng nội bộ doanh nghiệp tại một số quốc gia trên thế giới. Bảng 2.1: Tóm tắt các nghiên cứu về ứng dụng mô hình trong XHTD Năm Tác giả Kết quả nghiên cứu 1. Nghiên cứu trên thế giới Mô hình điểm số Z của Altman là mô hình hữu ích cho việc Laura và 2015 dự đoán tài chính, hỗ trợ các nhà quản lý trong quản trị rủi cộng sự ro. 2014 Bekhet và Đề xuất việc ứng dụng kết hợp mô hình Logistic và Neural
- 11 Eletter Network như là công cụ kỹ thuật khai thác dữ liệu, hỗ trợ quyết định cho vay đối với các ngân hàng thương mại tại Jordan, giúp công việc thẩm định hồ sơ vay vốn hiệu quả , tiết kiệm thời gian phân tích và chi phí Vận dụng kết hợp mô hình Logistic và Neural Network, kết Soureshjani quả nghiên cứu hỗ trợ ngân hàng ra quyết định cho vay đối 2012 và với 2 nhóm khách hàng trong mẫu: khách hàng có rủi ro cao Kimiagari và khách hàng có rủi ro thấp. Nghiên cứu khả năng dự đoán xếp hạng của mô hình probit dựa trên dữ liệu đánh giá của Fitch về trái phiếu của các Mizen và công ty tại Mỹ trong những năm 2000-2007. Qua nghiên 2012 Tsoukas cứu, tác giả kết luận việc ứng dụng mô hình phi tuyến probit vào dự đoán xếp hạng tốt hơn so với mô hình tuyến tính truyền thống Sử dụng mô hình Logistic để dự đoán sự phá sản dựa trên Ahmadi và mẫu nghiên cứu. Kết quả nghiên cứu cho thấy chỉ số nợ, tỷ 2012 cộng sự lệ lợi nhuận giữ lại trên tổng tài sản và tỷ suất sinh lợi trên tổng tài sản có vai trò dự báo tình hình kinh doanh công ty Ứng dụng mô hình Probit vào dự đoán xu hướng lợi nhuận 2011 Nyberg cổ phiếu của các công ty trên thị trường chứng khoán Mỹ nhằm mục tiêu dự báo suy thoái kinh tế Nghiên cứu kết luận rằng mô hình Z-Score có thể được sử Muchlis và dụng để xác định các công ty đang gặp vấn đề về tài chính 2010 Jayanti hoặc để cảnh báo sớm các vấn đề tài chính đang đe dọa hoạt động của ngành.
- 12 Đề xuất sử dụng mô hình hồi quy logistic với hệ số ngẫu Dong và 2010 nhiên để xây dựng bảng điểm tín dụng nhờ vào ưu điểm cộng sự khách quan và tính chính xác trong dự báo Nghiên cứu phân loại rủi ro tín dụng thông qua mô hình Neural Network. Kết quả dự báo chính xác đến 97,1% mẫu Matoussi và 2008 quan sát trong tập huấn luyện và 71% trong tập xác nhận, hỗ Abdelmoula trợ ngân hàng trong quá trình quản trị rủi ro tín dụng và từ đó thiết lập chính sách phù hợp Mô hình Neural Network mở ra hướng nghiên cứu đầy hứa Angelini và 2008 hẹn trong ứng dụng mạng để dự báo rủi ro tín dụng trong cộng sự xếp hạng nội bộ Nghiên cứu ứng dụng mô hình Neural Network trong dự báo phá sản và chấm điểm tín dụng khách hàng, tác giả kết 2008 Tsai và Wu luận mô hình cho kết quả tốt hơn mô hình thống kê truyền thống khác trong vấn đề ra quyết định tài chính. 2. Nghiên cứu tại Việt Nam Khắc Hiếu Ứng dụng mô hình Neural Network để dự báo lạm phát tại và Nguyễn Việt Nam. 2014 Thị Anh Vân Xây dựng phương trình dự báo rủi ro tín dụng cho các doanh nghiệp. Kết quả nghiên cứu mở ra hướng ứng dụng 2011 Hoàng Tùng xây dựng mô hình XHTD đối với các doanh nghiệp niêm yết, giúp nâng cao hiệu quả và phát huy vai trò của thị trường chứng khoán đối với nền kinh tế.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn Thạc sĩ Kinh tế: Các nhân tố ảnh hưởng đến sự thỏa mãn công việc của nhân viên khối văn phòng ở TP.HCM
138 p | 1473 | 548
-
Luận văn Thạc sĩ Kinh tế: Quản lý rủi ro trong hoạt động kinh doanh xuất nhập khẩu của các doanh nghiệp Việt Nam đáp ứng yêu cầu hội nhập kinh tế quốc tế
123 p | 857 | 194
-
Luận văn thạc sĩ kinh tế: Thực trạng và giải pháp chủ yếu nhằm phát triển kinh tế trang trại tại địa bàn huyện Đồng Hỷ, tỉnh Thái Nguyên
148 p | 603 | 171
-
Luận văn Thạc sĩ Kinh tế: Phát triển kinh tế hộ và những tác động đến môi trường khu vực nông thôn huyện Định Hóa tỉnh Thái Nguyên
148 p | 623 | 164
-
Luận văn Thạc sĩ Kinh tế: Marketing dịch vụ trong phát triển thương mại dịch vụ ở Việt Nam trong tiến trình hội nhập kinh tế quốc tế
135 p | 563 | 156
-
Luận văn Thạc sĩ Kinh tế: Một số giải pháp phát triển khu chế xuất và khu công nghiệp Tp.HCM đến năm 2020
53 p | 408 | 141
-
Luận văn thạc sĩ kinh tế: Nâng cao chất lượng dịch vụ tín dụng của ngân hàng TMCP các doanh nghiệp ngoài quốc doanh Việt Nam (VPBank)
98 p | 451 | 128
-
Luận văn Thạc sĩ Kinh tế: Tác động của hoạt động tín dụng trong việc phát triển kinh tế nông nghiệp - nông thôn huyện Đại Từ tỉnh Thái Nguyên
116 p | 513 | 128
-
Tóm tắt luận văn Thạc sĩ Kinh tế: Phát triển du lịch biển Đà Nẵng
13 p | 405 | 70
-
Tóm tắt luận văn Thạc sĩ Kinh tế: Phát triển dịch vụ bảo hiểm xã hội tự nguyện cho nông dân trên địa bàn tỉnh Bình Định
26 p | 399 | 64
-
Luận văn Thạc sĩ Kinh tế: Đánh giá ảnh hưởng của việc sử dụng các nguồn lực tự nhiên trong hộ gia đình tới thu nhập và an toàn lương thực của hộ nông dân huyện Định Hoá tỉnh Thái Nguyên
110 p | 345 | 62
-
Luận văn Thạc sĩ Kinh tế: Quản lý rủi ro trong kinh doanh của hệ thống Ngân hàng thương mại Việt Nam đáp ứng yêu cầu hội nhập kinh tế quốc tế
115 p | 353 | 62
-
Luận văn Thạc sĩ Kinh tế: Giải pháp nâng cao khả năng cạnh tranh của Công Công ty cổ phần Tư vấn xây dựng Ninh Bình trong thời kỳ hội nhập kinh tế quốc tế
143 p | 229 | 25
-
Luận văn Thạc sĩ Kinh tế: Nghiên cứu một số giải pháp quản lý và khai thác hệ thống công trình thủy lợi trên địa bàn thành phố Hà Nội trong điều kiện biến đổi khí hậu
83 p | 241 | 21
-
Tóm tắt luận văn Thạc sĩ Kinh tế: Phát triển kinh tế trang trại trên địa bàn huyện Lệ Thủy, tỉnh Quảng Bình
26 p | 229 | 16
-
Luận văn thạc sĩ kinh tế: Những giải pháp chủ yếu nhằm chuyển tổng công ty xây dựng số 1 thành tập đoàn kinh tế mạnh trong tiến trình hội nhập quốc tế
12 p | 189 | 13
-
Tóm tắt luận văn Thạc sĩ Kinh tế: Phát triển công nghiệp huyện Núi Thành, tỉnh Quảng Nam
26 p | 259 | 13
-
Luận văn Thạc sĩ Kinh tế: Giải pháp nâng cao hiệu quả kinh doanh tại Công ty Cổ phần Viễn thông FPT
87 p | 15 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn