Luận văn Thạc sĩ Toán học: Giao thức trục giao và ứng dụng trong toán phổ thông
Lớp các hàm đa thức trực giao có một vị trí khá đặc biệt trong toán học, nó không chỉ là đối tượng nghiên cứu của Đại số cao cấp, của Giải tích mà còn được nghiên cứu trong Giải tích số. Vì đa thức trực giao là hệ đầy đủ trong không gian các hàm liên tục, cho nên nó là cơ sở trực chuẩn của không gian này. Mọi hàm liên tục đều có thể khai triển một cách duy nhất thành chuỗi Fourier theo hệ hàm trực giao.