intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Phương pháp lượng giác hóa tích phân hàm vô tỷ

Chia sẻ: Nguyễn Thanh Dương | Ngày: | Loại File: PDF | Số trang:10

941
lượt xem
74
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo về phương pháp giải phương trình lượng giác giúp các bạn học sinh học và ôn tập tốt hơn

Chủ đề:
Lưu

Nội dung Text: Phương pháp lượng giác hóa tích phân hàm vô tỷ

  1. Bài 6. Phương pháp lư ng giác hóa tích phân hàm vô t BÀI 6. PHƯƠNG PHÁP LƯ NG GIÁC HOÁ TÍCH PHÂN HÀM VÔ T I. CÁC D N G TÍCH PHÂN VÀ CÁC PHÉP I BI N S THÔNG D N G D n g tích phân i bi n s i u ki n bi n s t ∈ − π , π  ∫ f ( x, ) dx 2 2 x = a sin t a −x  2 2   t ∈ 0, π ∪  π, 3π a ) ) ∫ f ( x, ) dx 2 2 x= x −a 2 2   cos t t ∈ 0, π ) ∫ f ( x, ) dx 2 2 x = a tg t x +a 2   a+x t ∈ ( 0, π ) ∫ f  x,  dx x = a cos 2t 2  a−x  t ∈  0, π  ∫ f ( x, ( x − a ) ( b − x ) ) dx 2 x = a + ( b − a ) sin t  2   II. CÁC BÀI T P M U MINH H A : t x = a sin t ; t ∈  − π , π  ∫ f ( x, ) a 2 − x 2 dx . 1 . D ng 1:  2 2   1/2 1 x ( 1 − x 2 )3 1 t x = sin t ;t ∈  − π , π  ⇒ ∫ t • I1 = dx . π/6 π/2  2 2   x3 12 dx costdt 3 π2 π2 π2 π2 (1 − sin 2 t ) 4 4 4 cos td ( cos t ) cos t dt cos t dt cos t dt ∫ ∫ ∫ ∫ ⇒ I1 = = = =− sin 3 t sin 3 t sin 3 t sin 4 t π6 π6 π6 π6 π6 32 32 32 32 1 − (1 − u ) cos4 td ( cos t ) 4 4 2 u du du 1+ u ∫ ∫ ∫ ∫ ∫ du = du = = = − 2 2 2 2 2 (1 − cos2 t ) (1 − u 2 ) (1 − u 2 ) (1 − u 2 ) 1− u π2 0 0 0 0 2 32 32 32 32 2  (1 + u ) + (1 − u )  1 + u2 1+ u2 1 1 1 1 ∫ ∫ ∫ ∫   du −  du − du = du = +   1− u 1 + u   (1 + u ) (1 − u )  2 2 4 4 1− u 1− u 0 0 0 0 32 1 1  1 1+ u 3 2+ 3 3 3 =  3 − ln ( 2 + 3 )   − 3ln + 4u  = 3 − ln = − + 4 1 − u 1 + u 0 1− u 4 2− 3 22 0 u 32 32 t u = 3 sin t ;t ∈  − π , π  ⇒ ∫ ( 3 − x2 ) 3 − x2 dx . • I2 =  2 2   1 89
  2. Chương II: Nguyên hàm và tích phân − Tr n Phương 0 t π/6 du 3 cos t dt π6 π6 ∫ (3 − 3sin t ) ∫ 3cos 3 − 3sin2 t ( 3 cos t ) dt = t 3cos2 t ( 3 cos t ) dt 2 2 Khi ó: I2 = 0 0 π6 π6 π6 2  1 + cos 2t  9 2 ∫ ( cos ∫ ∫ (1 + 2 cos 2t + cos t ) dt = 9 t ) dt 2 2   dt = =9   2 4 0 0 0 π6 π6  1 + cos 4t  9 9 ∫ ∫ ( 3 + 4 cos 2t + cos 4t ) dt  1 + 2 cos 2t +  dt = =   4 2 8 0 0 π6 9π 3  9π 81 3 9  1 =  + 3+ = 3t + 2 sin 2t + 4 sin 4t  = + 8 0 82 8  16 64 0 1 u 1 dx t u = 2 sin t ;t ∈  − π , π  ⇒ ∫ (4 − x • I3 = . 0 t π/6  2 2   ) 4 − x2 2 0 du 2costdt π6 π6 2 cos t dt 2 cos t dt ∫ ( 4 − 4 sin ∫ 4 cos Khi ó: I3 = = t ) 4 − 4 sin t 2 2 2 2 t 4 cos t 0 0 π6 π6 π6 1  dt 1 1π 1 ∫ ∫ d ( tg t ) =  tg t  = tg = = = 4 0 2 4 cos t 4 4 6 43 0 0 0 a u a t u = a sin t ;t ∈  − π , π  ⇒ ∫ 2 2 2 a − x dx ; ( a > 0) . • I4 = x 0 t π/2  2 2   0 du acostdt π2 a ∫ ∫a Khi ó: I 4 = x 2 a 2 − x 2 dx = 2 2 2 2 2 sin t a − a sin t ( a cos t ) dt 0 0 π2 π2 π2 a4 ∫ ∫ ∫ sin a sin t ( a cos t ) ( a cos t ) dt = a 4 2 2 2 2 2 sin t cos t dt = 2t dt = 4 0 0 0 π2 4 π2 4 4 4   a π πa a (1 − cos 4t ) dt = a 1 ∫  t − sin 4t  = = ⋅=  0 8 8 4 8 2 16 0 1 90
  3. Bài 6. Phương pháp lư ng giác hóa tích phân hàm vô t 12 0 0 dx dx du ∫ ∫ ∫ • I5 = = = 1 + − x (1 + x ) 2 1 1 ) ( − 1+x − u2 -1 2 −1 2 0 1+ 1+ 2 4 4 0 1/2 u 1 t u = sin t ;t ∈  − π , π  ⇒ Khi ó ta có: 0 t π/2  2 2   2 (costdt)/2 du π2 π2 π2 π2  2 cos t dt cos t dt dt π π ∫ 2+ ∫ ∫ ∫ 1 −  dt = − 2 I5 = = − 2J = =  2 + cos t  2 + cos t 2 2 + cos t 2 1 − sin 2 t 0 0 0 0 () 2 d tg t π2 π2 π2 π2 dt dt dt 2 ∫ ∫ 1 + 2 cos ∫ cos ∫ J= = = = ) ( t 2t t 1 + tg 2 t + 2 2 + cos t 2 2 3 + tg 0 0 0 0 2 2 2 2 π2 tg t (9 − 4 3 ) π 2 2 1 π π π arctg 2 ⇒ I13 = arctg − 2⋅ = = = = 2 18 3 3 3 3 33 33 0 1− 2 1− 2 −2 ( u + 1) du xdx xdx ∫ ∫ ∫ • I6 = = = 2 2 2 2 u2 4 − u2 ( x − 1) 3 + 2x − x ( x − 1) 4 − ( x − 1) 1− 3 1− 3 −3 u −3 −2 t u = 2 sin t ;t ∈  − π , π  ⇒ Khi ó ta có:  2 2 t −π/3 −π/4   du 2costdt −π 4 −π 4 −π 4 −π 4 1  (1 + 2 sin t ) 2 cos t dt (1 + 2 sin t ) dt 1 dt ∫ ∫ ∫ =  cotg t  I6 = = + 4  −π 3 2 −π 3 sin t 4 sin 2 t 2 2 4 sin t 4 cos t −π 3 −π 3 −π 4 −π 4 −π 4 d ( cos t ) 3 −3 1 sin t dt 3 −3 1 3 − 3 1 1 + cos t ∫ ∫ − ln = + = − = 2 2 12 2 −π 3 1 − cos t 12 2 −π 3 1 − cos t 12 4 1 − cos t −π 3 3 −3 1 2+ 2  3 −3 1 3+2 2 −  ln − ln 3  = − ln = 4 2− 2  12 12 4 3 0 1/2 u 12 x 2 dx t u = sin t ;t ∈  − π , π  ⇒ ∫ • I7 = .  2 2 0 t π/6   ( 1 − x 2 )5 0 du costdt π6 π6 π6 π6 2 2 sin t cos t dt sin t dt 13 1 ∫ ∫ ∫ ⇒ I7 = tg 2 t d ( tg t ) = tg t = = = cos 4 t 3 5 93 (1 − sin 2 t ) 0 0 0 0 1 91
  4. Chương II: Nguyên hàm và tích phân − Tr n Phương a ; t ∈  0 , π ∪  π , 3π ) ) ∫ f ( x, ) x 2 − a 2 dx . t x= 2 . D ng 2: 2 2   cos t 2 x 2 2 dx t x = 1 ; t ∈ 0, π ∪ π, 3π ⇒ ) ) ∫ • I1 = . t 2 2 π/4 π/3   cos t x x2 − 1 2 sintdt/cos2 t dx π3 π3 π3 π3 sin t dt cos 2 t sin t dt sin t dt πππ ∫ ∫ cos t ∫ ∫ ⇒ I1 = = dt = − = = = cos t. tg t π 4 3 4 12 2 1 1 −1 tg t π4 π4 π4 2 cos t cos t 2 x 2 2 x 2 dx t x = 1 ; t ∈  0 , π ∪  π , 3π ⇒) ) ∫ • I2 = . t 2 2 π/4 π/3   cos t x2 − 1 2 sintdt/cos2 t dx 1 ⋅ sin t dt π 3 sin t dt π 3 π3 2 2 2 2 4 x dx cos t cos t = cos t = cos t dt ∫ ∫ ∫ ∫ ⇒ I2 = = 4 2 2 1 −1 sin t π 4 cos t x −1 π4 π4 2 2 2 cos t cos t 2 π3 π3 π3 1  (1 + sin t ) + (1 − sin t )  d ( sin t ) cos t dt ∫ ∫ (1 − sin ∫ d ( sin t ) = = = 4 π 4  (1 + sin t ) (1 − sin t )    cos 4 t 2 t) 2 π4 π4 π3 π3 2 11 1 1 2 1 1 ∫ ∫  d ( sin t ) = ( )   d sin t = + + +  4 π 4  1 − sin t 1 + sin t  4 π 4  (1 − sin t ) (1 + sin t ) 1 − sin2 t  2 2 π3 1 2 2+ 3  1 1 1 + sin t  1 2  = 4  2 − 3 − 2 + 3 + ln 2 − 3  − + ln = −  4  1 − sin t 1 + sin t 1 − sin t  π 4   1 2 2+ 2  2 3− 2 1 7−4 3 2  = + ln + ln − − 42− 2 2+ 2 2− 2  2 4 3−2 2   4 8 x 8 x2 − 16 t x = 4 ; t ∈ 0, π ∪  π, 3π ⇒ ) ) ∫ • I3 = dx . 0 t π/3 2 2   cos t x 4 4sintdt/cos2t dx 4 sin t dt 16  12 − 1 ⋅  π3 π3 π3 2 2  cos t  cos t 16 tg t ⋅ sin t dt ∫ ∫ ∫ 2 ⇒ I3 = = 4 tg t dt = 4 cos t 0 0 0 cos t π 3  π3 π3 (1 + tg 2 t ) − 1 dt = 4  d ( tg t ) − dt  = 4 ( tg t − t ) π 3 = 4  3 − π   ∫ ∫ ∫  =4      3 0 0  0 0 1 92
  5. Bài 6. Phương pháp lư ng giác hóa tích phân hàm vô t dx a ( )( ) ;t ∈ 0 , π ∪ π , π ∫ (x • I4 = ( a > 0) . t x= 2 2 ) x −a cos t 2 2 2 2 −a 1 asintdt a tg t dt ∫ ∫ ε⋅a ⇒ I4 = ⋅ = 2 3 3 2  2 1  cos t cos t tg t 1 a − 1 a  − 1 2 2  cos t   cos t  d ( sin t ) dt 1 cos t dt 1 −1 ∫ ε.a ∫ ∫ +c = = = = 2 2 2 2 2 2 2 cos t tg t ε.a sin t ε.a sin t ε.a sin t trong ó ε = 1 n u tgt > 0 và ε = − 1 n u tgt < 0 2a x a2 2a x2 − a2 t x = a ; t ∈ 0, π ∪ π, 3π ⇒ ) ) ∫ • I5 = dx . t π/4 π/3 2 2   cos t x a2 asintdt/cos2t dx  a sin t dt  a 2  12 − 1 ⋅ π3 π3 π3 2 2 2  cos t  cos t a tg t ⋅ sin t dt ∫ ∫ ∫ 2 ⇒ I5 = = a tg t dt = a cos t π4 π4 π4 cos t π 3  π3 π3 (1 + tg 2 t ) − 1 dt = a  d ( tg t ) − dt  = a ( tg t − t ) π 3 = a  3 − 1 − π   ∫ ∫ ∫  =a   π 4   12  π4   π4 π4 2a x a2 2a 2 2 x −a t x = a ; t ∈ 0, π ∪ π, 3π ⇒ ) ) ∫ • I6 = dx . t π/4 π/3 2 2   x2 cos t a2 asintdt/cos2t dx  a sin t dt a 2  12 − 1 ⋅  π3 π3 π3 2 2 2 2  cos t  cos t a tg t ⋅ sin t dt sin t ∫ ∫ ∫ cos ⇒ I5 = dt = = 2 2 3 () a cos t t a π4 π4 π4 cos t 2 π3 π3 π3 2 2  (1 + sin t ) − (1 − sin t )  sin t cos t sin t 1 ∫ ∫ (1 − sin ∫ d ( sin t ) = d ( sin t ) dt = = 4 π 4  (1 + sin t ) (1 − sin t )    cos 4 t 2 t) 2 π4 π4 π3 π3 2 11 1 1 2 1 1 ∫ ∫  d ( sin t ) = d ( sin t )  = − + − ( (1 + sin t ) 1 − sin2 t  4 π 4  1 − sin t 1 + sin t  2 2 4 π 4  1 − sin t )  π3 1 2 2 + 3  2 3 − ln ( 2 + 3) 1 1 1 + sin t  1 2  = 4 = − ln − ln = − − 4 1 − sin t 1 + sint 1 − sin t  π 4 2− 3 2+ 3 2− 3  2 1 93
  6. Chương II: Nguyên hàm và tích phân − Tr n Phương t x = a tg t ; t ∈  0 , π ) ∫ f ( x, ) x 2 + a 2 dx . 3 . D ng 3: 2  1 1 3 x ( 1 + x 2 )5 1 t x = tg t ;t ∈  0, π ⇒ ) ∫ t π/6 π/4 • I1 = dx . 2  x8 1 3 dx dt cos 2 t 5 (1 + tg t ) 2 π 4  1  dt2 π 4 cos t dt π 4 d ( sin t )  dt 5 2  π4 cos t =  cos t  cos t = ∫ ∫ ∫ ∫ ⇒ I1 = = 8 8 8 8 tg t tg t sin t π 6 sin t π6 π6 π6 π4 π4 1 −1 ( 8 2 − 128) = 128 − 8 2 ∫ ( sin t )−8 d ( sin t ) = − = = 7 7 7 7 sin t π6 π6 0 0 1 ∫ ∫ ∫ ( x + 1)2 + 1 d ( x + 1) = u 2 + 1 du 2 • I2 = x + 2x + 2dx = -1 −1 0 0 1 u t u = tg t ;t ∈  0 , π ⇒ ) 0 t π/4 Khi ó ta có: 2  du dt cos 2 t π4 π4 π4 π4 1 d ( sin t ) dt dt cos t dt ∫ ∫ ∫ ∫ ∫ u 2 + 1 du = tg 2 t + 1 I2 = = = = 2 3 4 (1 − sin 2 t )2 cos t cos t cos t 0 0 0 0 0 2 π4 π4 2  (1 + sin t ) + (1 − sin t )  1 1 1 1 ∫ ∫  (1 + sin t ) (1 − sin t )  d ( sin t ) = 4  d ( sin t )  = +  1 − sin t 1 + sin t    4 0 0 π4 π4 1 1 1 + sin t   2 1 1 1 1 ∫ d ( sin t ) =  + ln = + + − 1 − sin t  0 ( 2 2 2 4 1 − sin t 1 + sin t  4  1 − sin t ) (1 + sin t ) 1 − sin t  0 1 2 2+ 2  2 21 = = + ln + ln 3 + 2 2 − 4 2− 2 2+ 2 2− 2  2 4   12 u2 − 1 1+ x 1+ x 4udu ∫ ⇒x= 2 • I3 = dx . t u= ; dx = ( u 2 + 1)2 1− x 1− x u +1 0 1 3 u 3 2 4u du () t u = tg t;t ∈ 0 , π ⇒ ∫ (u ⇒ I3 = . t π/4 π/3 2 2 + 1) 2 1 dt/cos2 t du π3 π3 π3 (1 − cos 2u ) du = 2  u − 1 sin 2u   3 π ∫ ∫ 4 sin 2 u du = 2 ⇒ I3 =  +1− =  π4 2 6 2 π4 π4 1 94
  7. Bài 6. Phương pháp lư ng giác hóa tích phân hàm vô t 3 -2 3 −2 3 dx dx du ∫ ∫ ∫ • I4 = = = 3 3 ( u2 +1)3 ( x + 2 ) 2 ( x 2 + 4x + 5 ) ( x + 2)2 ( x + 2)2 + 1 u2   −1 −1 1 1 u 3 t u = tg t ;t ∈  0 , π ⇒ ) t π/4 π/3 Khi ó ta có: 2  du dt cos 2 t π3 π3 π3 π3 cos3 t cos3 t 1 − sin 2 t  −1  dt ∫ ∫ ∫ ⇒ I4 = d ( sin t ) =  − sin t  dt = ⋅ =  sin t π4 2 2 2 2 tg t cos t sin t sin t π4 π4 π4  −2 3   −2 2  −7 6 9 2 −7 3 = − = − − + = 2  2 2 23 22 6 3 2 2 2 x − x 2 − 2x + 2 x − ( x − 1) + 1 dx dx ∫ x+ ∫x+ • I5 = ⋅ = ⋅ 2 2 x − 2x + 2 x − 2x + 2 ( x − 1) + 1 ( x − 1) + 1 2 2 1 1 0 1 u 1 2 u +1− u +1 du t u = tg t ;t ∈  0 , π ⇒ ) ∫ u +1+ 0 t π/4 . = ⋅ 2  2 2 u +1 u +1 0 du dt cos 2 t π4 π4 2 tg t + 1 − tg t + 1 dt sin t + cos t − 1 ∫ ∫ sin t + cos t + 1 dt ⇒ I5 = ⋅ = t ( tg t + 1) 2 2 2 tg t + 1 + tg t + 1 cos 0 0 π4 π4   2 dt π π ∫ 1 − sin t + cos t + 1  dt = 4 − 2 ∫ sin t + cos t + 1 = 4 − 2J =   0 0 π4 π4 π4 dt dt dt ∫ ∫ ∫ 2 cos J= = = ) ( t cos t + 2 cos 2 t t 1 + tg t sin t + cos t + 1 2 2 sin 0 0 0 2 2 2 2 2 () d tg t π4 π4 π π ) ( 2 = ln 1 + tg t = ln 1 + tg π = ln 2 ⇒ I12 = − 2 ln 2 = − ln 2 ∫ = t 2 8 4 4 1 + tg 0 0 2 1 1 0 • I 6 = ∫ x x − 2x + 2 dx = ∫ x ( x − 1) + 1 dx = ∫ ( u + 1) u 2 + 1 du 2 2 0 0 −1 0 u −1 t u = tg t ;t ∈  0 , π ⇒ ) Khi ó ta có: 0 t −π/4 2  dt/cos2 t du 1 95
  8. Chương II: Nguyên hàm và tích phân − Tr n Phương 0 0 0 dt 1 + tg t sin t + cos t ∫ ∫ ∫ 2 (1 + tg t ) 1 + tg t I6 = dt = dt = 2 3 4 cos t cos t cos t −π 4 −π 4 −π 4 2 0 0 0 0  (1 + sin t ) + (1 − sin t )  d ( sin t ) d ( cos t ) sin t dt ∫ ∫ ∫ ∫ (1 + sin t )(1 − sin t )  d ( sin t ) = + =− + −π 4   cos4 t (1 − sin2 t )2 cos4 t −π 4 −π 4 −π 4 0 0 2 1 1 1 ∫  d ( sin t )  = + +  1 − sin t 1 + sin t  3cos3 t −π 4 −π 4 0  ( 1− 2 2 1 1 2 ∫ d sin t ) = + + + ( 2 2 2 3  1 − sin t ) (1 + sin t ) 1 − sin t  −π 4 0 1− 2 2  1 1 + sin t  1 + ln = + −   1 − sin t 1 + sin t 1 − sin t  −π 4 3 1− 2 2  2 2 −1 1+ 4 2 2 + 2 ln (1 + 2 ) − = + ln = − 2+ 2 2− 2 2 +1 3 3 2 x2 + (3 2) 3 2 3 2 9 + 2x 2 ∫ ∫ • I7 = dx = 2 dx x2 x2 32 32 x 32 3 2 3 tg t ;t ∈  0, π ⇒ ) t x= Khi ó ta có: 2 t π/6 π/4  2 ( 2 cos 2 t ) dx 3 dt 2 2 ( tg 2 t + 1) x + (3 2) (3 2) 2 3 2 π4 3 dt ∫ ∫ I7 = 2 dx = 2 ⋅ 2 2 2  3 tg t  x 2 cos t π6 32   2  π4 π4 22 22 u2 + 1 − u2 d ( sin t ) dt du ∫ cos t sin ∫ cos ∫ ∫ =2 =2 =2 =2 du u (1 − u ) u (1 − u ) 2 2 t sin 2 t 2 2 2 2 t π6 π6 12 12   22 22 22  1 1+ u 1  du du  2 3+ 2 2 ∫ ∫ = 2 = 2  ln ln −2+2 2 + − =  u 2 2  2 1− u u 1 2 2 3 1− u   12 12 0 1 x 1 t x = tg t ;t ∈  0, π ⇒ ) ∫x 3 2 1 96 = •I 1 + x dx .
  9. Bài 6. Phương pháp lư ng giác hóa tích phân hàm vô t 0 t π/4 dx dt cos 2 t π4 π4 π4 π4 tg3 t sin 3 t 1 − cos2 t dt ∫ ∫ cos ∫ cos ∫ 3 2 ⇒ I8 = d ( cos t ) tg t 1 + tg t dt = dt = − = cos 2 t 3 6 cos6 t t t 0 0 0 0 π4 π4 π4 1 1 d ( cos t ) d ( cos t ) 2 ∫ ∫ = (1 + 2 ) =− + = − 3 6 4 5  5 cos t 3cos t  0 15 cos t cos t 0 0 0 1 x 1 x 2 dx t x = tg t ;t ∈  0, π ⇒ ) ∫ (x 0 • I9 = t . π/4 2  + 1) x 2 + 1 2 0 dx dt cos 2 t π4 π4 π4 π4 tg2 t 2 2 2 dt sin t sin t cos t sin t ∫ (1+ tg t ) ∫ ∫ ∫ 1− sin d ( sin t ) I9 = dt = dt = ⋅ = 2 cos2 t 2 cos t 2 2 1 + tg t cos t t 0 0 0 0 π4 π4  1 1 + sin t    1 2 ∫ − sin t  = ln (1 + 2 ) − − 1 d ( sin t ) =  ln =  2  0  1 − sin t  2 1 − sin t 2 0 1 x 1 3 1 ( x2 + 1) x2 + 1 t x = tg t ;t ∈  0, π ⇒ ) ∫ • I10 = dx . t 2 π/6 π/4  x3 13 dx dt cos 2 t (1 + tg 2 t ) π4 π4 π4 2 1 + tg t dt dt sin t ∫ ∫ sin ∫ sin I10 = dt ⋅ = = 3 2 3 2 4 t cos 2 t tg t cos t t cos t π6 π6 π6 2 π4 π4 π4  cos2 t + 1 − cos2 t  d ( cos t ) d ( cos t ) ∫ ∫ ∫  d ( cos t ) = =− =− (1 − cos2 t ) cos2 t π 6 (1 − cos2 t ) cos2 t π 6  (1 − cos2 t ) cos t  2 2   π6 π4 π4 π4 π4 2 2  cos t 1  cos t  ( d ( cos t ) d ( cos t ) ∫ ∫ ∫ ∫  d ( cos t ) = 2 d cos t ) = + + + 2 2 2 2  1 − cos t cos t  1 − cos t π 6 cos t π 6  1 − cos t  π6 π6 π4 π4 2  1 1 1 1 + cos t 1 ∫  d ( cos t )  =  2 ln − + −  1 − cos t 1 + cos t   1 − cos t cos t  π 6 4 0 π4  9 1 + cos t 1  1 1 1 9 1+ 2 2 +   = ln =  ln −1− 2 − − +  4 1 − cos t cos t 4  1 − cos t 1 + cos t   π 6 2 2 + 3 3 1 97
  10. Chương II: Nguyên hàm và tích phân − Tr n Phương  a+ x  () t x = a cos 2t ; t ∈ 0 , π ∫ f  x,  dx . 4 . D ng 4:  a−x 2 0 5/2 x 52 5+ x t x = 5 cos 2t ; t ∈ 0, π  ⇒ ∫ • I1 = dx . t π/4 π/6  2   5−x 0 dx −10sin2tdt π6 π4 2 5 (1 + cos 2t ) cos t ∫ ∫ ⇒ I1 = ( −10 sin 2t ) dt = 10 ( 2 sin t cos t ) dt (1 − cos 2t ) sin 2 t 5 π4 π6 π4 π4 π4 ( ) (1 + cos 2t ) dt = 10  t + 1 sin 2t  = 5π + 5 2 − 3  ∫ ∫ 2 cos 2 t dt = 10  = 10  π6 6 2 2 π6 π6 0 3/2 x 3/2 3+ x t x = 3 cos 2t ; t ∈ 0, π  ⇒ ∫ x2 • I2 = dx . t π/4 π/6  2   3−x 0 dx − 6sin2tdt π6 π4 2 3 (1 + cos 2t ) ( −6sin 2t ) dt = 54 cos2 2t cos t ( 2sin t cos t ) dt ∫ (9cos 2t ) ∫ ⇒ I2 = 2 3 (1 − cos 2t ) sin 2 t π4 π6 π4 π4 π4 ∫ ∫ ∫ ( cos cos 2 2t ( 2 cos 2 t ) dt = 54 2t + cos3 2t ) dt cos2 2t (1 + cos 2t ) dt = 54 2 = 54 π6 π6 π6 π4 π4  1 + cos 4t cos 6t + 3cos 2t  27   1 1 3 ∫ = 54   dt =  2t + 2 sin 4t + 6 sin 6t + 2 sin 2t  +   2 π6 2 4 π6 27  π 1 3   π 3 3 3   27  π 4   − +  −  +  =  + − 3  = + 2  2 6 2   3 4  2  6 3  4 t x = a + ( b − a ) sin 2 t ; t ∈ 0, π  ∫ f ( x, ( x − a ) ( b − x ) ) dx . 5 . D ng 5:  2   3a + b a+b x = a + ( b − a) sin2 t a+b x 2 4 2  dx ∫ ⇒ t • I1 = (a < b). t ∈0, π  t π/6 π/4 ( x − a)( b − x) 3a+b  2   4 dx (b− a)sin2tdt π4 π4 π4 π π ( b − a ) sin 2t dt 2sin t cos t dt π ∫ ∫ ∫ 2 dt = 2  4 − 6  = 6 ⇒ I1 = = =   ( b − a ) sin 2 t (1 − sin 2 t ) 2 2 2 sin t cos t π6 π6 π6 III. CÁC BÀI T P D ÀNH CHO B N CT GI I 2 2 2 1 dx dx 2+x ∫ ∫x ∫ ∫ x3 4 − x 2 dx ; I2 = ; I4 = x 3 I1 = ; I3 = dx 32 32 2−x (x − 1) x ( x + 4) 3 2 3 2 −1 o 3 23 1 98
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2