Tóm tắt Luận văn Thạc sĩ Khoa học: Nghiên cứu, tính toán sự cố bình điều áp lò phản ứng AP1000
lượt xem 4
download
Do nhu cầu điện năng tăng cao, năm 2009, Quốc hội đã phê duyệt chủ trương xây dựng hai nhà máy điện hạt nhân đầu tiên ở nước ta, ở Ninh Thuận, theo công nghệ do Liên bang Nga (gọi là Ninh Thuận 1) và Nhật Bản (gọi là Ninh Thuận 2) đề xuất. Dự kiến công nghệ đề xuất cho Ninh Thuận 2 có thể là AP1000. Vì vậy, Luận văn này đã chọn một nội dung nghiên cứu liên quan đến AP1000.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt Luận văn Thạc sĩ Khoa học: Nghiên cứu, tính toán sự cố bình điều áp lò phản ứng AP1000
- MỤC LỤC 1
- DANH MỤC TỪ VIẾT TẮT ACC (Accumulators): Bế tích nước cao áp ADS (Automatic Depressurization System): Hệ thống giảm áp tự động. DVI (Direct Vessel Injection): Đường dẫn nước trực tiếp vào thùng lò IRWRT (InContainment Refueling Water Storage Tank): Bể tr ữ n ước thay đảo nhiên liệu boongke lò. LOCA (Small Loss Of Coolant Accident): Sự cố mất nước làm mát nhỏ PRHR (Passive Residual Heat Removal): Hệ thống tải nhiệt dư th ụ động PXS (Passive core Cooling System): Hệ thống làm mát vùng hoạt thụ động. PWR (Pressurized Water Reactor): Lò phản ứng nước áp lực. RCS (Reactor Cooling System): Hệ thống làm mát lò phản ứng. TMI2 (ThreeMiles Island – 2): Tổ máy thứ 2 nhà máy điện hạt nhân Three Miles Island. U.S NRC (United States Nuclear Regulatory Commission): Ủy ban pháp quy hạt nhân Hoa Kỳ 2
- MỞ ĐẦU Do nhu cầu điện năng tăng cao, năm 2009, Quốc hội đã phê duyệt chủ trương xây dựng hai nhà máy điện hạt nhân đầu tiên ở nước ta, ở Ninh Thuận, theo công nghệ do Liên bang Nga (gọi là Ninh Thuận 1) và Nhật Bản (gọi là Ninh Thuận 2) đề xuất. Dự kiến công nghệ đề xuất cho Ninh Thuận 2 có thể là AP1000. Vì vậy, Luận văn này đã chọn một nội dung nghiên cứu liên quan đến AP1000. AP1000 là lò phản ứng hạt nhân thuộc loại PWR (lò nước áp lực) của Tập đoàn Westinghouse. Đây là loại lò có nhiều cải tiến theo hướng an toàn thụ động (Advanced Passive) có mức độ an toàn cao. AP1000 có bình điều áp với thể tích gần gấp đôi các loại lò cùng công suất. Nhà máy điện hạt nhân là loại hình sử dụng năng lượng với hiệu suất cao, nhưng khi tai nạn xảy ra thì thiệt hại vô cùng lớn, nên vấn đề an toàn luôn được đặt lên hàng đầu. Bất cứ cải tiến nào cũng yêu cầu phải có sự chú ý nghiên cứu phù hợp. Vì vậy, Luận văn này đề xuất nghiên cứu về bình điều áp và sự cố bình điều áp có thể xảy ra đối với lò phản ứng AP1000. Sự cố được mô phỏng tính toán bằng phần mềm RELAP5 – một phần mềm được sử dụng tương đối phổ cập hiện nay trong tính toán an toàn nhà máy điện hạt nhân nói chung, cũng như được sử dụng để mô phỏng các sự cố giả định đối với các bộ phận, hệ thống của nhà máy điện hạt nhân nói riêng. Do vấn đề an toàn của nhà máy điện hạt nhân được xem xét chủ yếu trên cơ sở phân tích các sự cố giả định của lò phản ứng hạt nhân. Vì vậy, dưới đây, trong luận văn này, tác giả sẽ dùng cụm từ “nhà máy điện hạt nhân AP1000” với cùng ý nghĩa như cụm từ “lò phản ứng hạt nhân AP1000”. 3
- 1. CHƯƠNG 1. LÒ PHẢN ỨNG AP1000, BÌNH ĐIỀU ÁP 1.1. Giới thiệu về lò phản ứng AP1000 1.1.1. Giới thiệu chung Lò phản ứng hạt nhân AP1000 có công suất 1117 MWe, trong luận văn này, tác giả thống nhất gọi tắt là AP1000. Dựa trên 20 năm nghiên cứu và phát triển, AP1000 được xây dựng và cải tiến dựa trên các công nghệ đã có từ các bộ phận đang được sử dụng trong các thiết kế của Westinghouse. Bao gồm bình sinh hơi, bình điều áp, thiết bị điều khiển – đo đạc, nhiên liệu và thùng lò được sử dụng rộng rãi trên toàn thế giới và được kiểm chứng qua nhiều năm với độ tin cậy cao khi vận hành, các thành phần chính của AP1000 được giới thiệu ở Hình 1.1 AP1000 thiết kế hướng tới sự an toàn cao và hiệu suất tối ưu. Hệ thống an toàn được thụ động hóa bằng việc sử dụng các lực tự nhiên: Áp suất, trọng lực và đối lưu. Bên cạnh đó các tác động điều hành phức tạp để điều khiển sự an toàn được giảm thiểu. Vùng hoạt AP1000 bao gồm 157 bó nhiên liệu, chiều dài 4.3 m, sắp xếp theo mảng 17 17. Vùng hoạt AP1000 gồm ba lớp xuyên tâm có độ giàu khác nhau; độ giàu của nhiên liệu theo dải từ 2.35 đến 4,8%. Thiết kế một chu kỳ nhiên liệu của vùng hoạt là 18 tháng với yếu tố công suất là 93%, tốc độ trung bình lớp phát ra cao cỡ 60000 MWD/t, các thông số chính của AP1000 Bảng 1.1. Bảng 1. Các thông số chính của lò AP1000 Thông số AP1000 Công suất điện, MWe 1117 Công suất nhiệt, MWt 3400 Áp suất vận hành lò phản ứng, MPa 15.5 Nhiệt độ chân nóng, °C (°F) 321 (610) Số bó nhiên liệu 157 Kiểu bó nhiên liệu 17x17 Chiều dài hoạt động thanh nhiên liệu, m (ft) 4.3 (14) Hệ số tuyến tính nhiệt, kw / ft 5.71 3 3 68,1 (300) Lưu lượng nhiệt thùng lò 10m /h(10 gpm) 2 2 11.600 (125.000) Diện tích bề mặt máy tạo hơi nước, m (Ft ) 4
- 3 3 59,5 (2100) Thể tích bình điều áp, m (Ft ) Hình 1. Nhà máy điện hạt nhân AP1000 1.1.2. Hệ thống tải nhiệt Hệ thống tải nhiệt AP1000 bao gồm hai hệ thống đơn, mỗi hệ thống đơn có một chân nóng và hai chân lạnh, bình sinh hơi, hai máy hơm nước đặt ở chân lạnh của bình sinh hơi và chỉ một bình điều áp cho cả hai hệ thống đơn. Hệ thống làm mát vùng hoạt thụ động PXS (Passive Core Cooling System) đảm bảo quá trình làm mát vùng hoạt khi xảy ra những sự cố. PXS tải nhiệt dư từ vùng hoạt, bơm nước cấp cứu và giảm áp suất mà không cần dùng một thiết bị tác động nào như máy bơm hay nguồn điện. PXS dùng 3 nguồn nước để làm mát vùng hoạt là bể bù nước vùng hoạt CMT (Core Makeup Tank), bể tích nước cao áp ACC (Accumulators) và bể tích nước thay đảo nhiên liệu IRWST (Incontainment Refueling Water Storage Tank). Hệ thống CMT thay thế hệ thống phun an toàn áp suất cao HPSI ( High Pressure Safety Injection) của những loại lò phản ứng hạt nhân PWR thông thường. CMT cung cấp nước trộn 5
- với axit boric dưới áp suất cao và dẫn dung dịch axitboric theo hai đường song song. CMT được thiết kế để hoạt động dưới mọi áp suất của hệ thống sơ cấp nhờ sự tác động của trọng lực do được đặt cao hơn những đường ống của hệ thống làm mát lò phản ứng RCS. Một đường điều chỉnh áp suất nối chân lạnh với đỉnh của CMT và đường ống ra kết nối phần dưới của CMT qua đường dẫn nước trực tiếp vào thùng lò DVI (Direct Vessel Injection). ACC của AP1000 giống như ACC của những lò phản ứng hạt nhân PWR thông thường. ACC có dạng hình cầu chứa ¾ nước lạnh có axit boric và chịu áp suất nén bởi khí nitơ. Đường ống ra của ACC được kết nối với hệ thống DVI. Một cặp van kiểm tra (check valves) ngăn chặn nước trong ACC khi vận hành bình thường. Khi áp suất giảm xuống dưới áp suất của ACC (cộng với áp suất của van kiểm tra), nước sẽ được đưa vào phần dưới của vùng hoạt downcomer qua DVI. Hình 1. Hệ thống làm mát lò phản ứng AP1000 PXS còn có hệ thống tải nhiệt dư thụ động PRHR (Passive Residual Heat Removal), được thiết kế để tải nhiệt dư của RCS trong quá trình sự cố. PRHR nằm trong IRWST ở chiều cao trên vùng hoạt. Đường ống dẫn vào của PRHR được kết nối với một chân nóng trong khi đó 6
- đường ống ra được kết nối với đầu ra của một trong hai bình sinh hơi. Đường ống vào được mở với áp suất như của RCS, đường ống ra thường bị đóng bởi hai van cô lập song song để thỏa mãi tiêu chí “sai hỏng đơn”. Trong quá trình vận hành bình thường, nước trong đường ống của PRHR cân bằng với IRWST. Khi tín hiệu bơm an toàn SI (Safety Injection) được kích hoạt sau một sự cố, những van cô lập trên sẽ mở và do đó nhiệt dư của RCS sẽ được truyền đi theo cơ chế đối lưu tự nhiên. Để gia tăng sự đối lưu tự nhiên, máy bơm sẽ bị ngắt khi tín hiệu SI khởi động. Hệ thống nước làm mát thụ động boongke lò PCS (Passive Containment System), tải nhiệt đối lưu tự nhiên qua bể tích nước làm mát boongke lò thụ động PCCWST (Passive Containment Cooling Water Storage Tank) bằng trọng lực. Nó tải nhiệt qua hệ thống bồn nhiệt cuối cùng UHS (Ultimate Heat Sink) trong trường hợp áp suất của boongke lò gia tăng quá cao. 1.2. Bình điều áp lò phản ứng AP000 1.2.1. Cấu tạo bình điều áp Bình điều áp của lò phản ứng AP1000 là bộ phận chính của hệ thống kiểm soát áp suất chất làm mát lò phản ứng. Bình điều áp là một thùng hình trụ đứng có đầu trên và đầu dưới hình bán cầu. Trong vận hành bình thường, nước chiếm khoảng một nửa dung tích bình điều áp. Phần nước này được đun nóng đến nhiệt độ bão hòa bằng bộ gia nhiệt trong suốt quá trình vận hành bình thường. Nước và hơi nước trong bình duy trì ở điều kiện bão hòa cân bằng. 7
- Hình 1. Bình điều áp lò AP1000 Một đầu phun giảm áp, 2 đầu ra van an toàn và van giảm áp được đặt ở đầu trên, bộ gia nhiệt dùng điện được bố trí ở đầu dưới và có thể tháo rời để thay thế. Đầu dưới bao gồm một vòi gắn với đường nối bình điều áp với chân nóng. Trong quá trình co và giãn nở nhiệt hệ thống chất làm mát, dòng chất làm mát đi vào và đi ra khỏi bình điều áp thông qua đường nối này. Cấu tạo bình điều áp lò phản ứng AP1000 được thể hiện qua Hình 1.5. 1.2.2. Van an toàn của bình điều áp Hai van an toàn của bình điều áp là loại van tự dẫn động, tải lò xo có chức năng giảm áp. Các van này được đặt ở nắp bình điều áp. Khi áp suất hệ thống vượt quá áp suất phát động của các van này, thì áp suất sẽ được xả vào boongke lò. Áp suất phát động của van là 17,23 MPa. Áp suất phát động và khả năng kết hợp của chúng được thiết lập dựa trên nguyên tắc áp suất hệ thống chất làm mát lò phản ứng không được vượt quá giới hạn áp suất tối đa trong điều kiện vận hành mức B mất tải nhất thời (110% của 17,23MPa). 8
- Hình 1. Hệ thống giảm áp thụ động trong lò phản ứng AP1000 Kích thước van an toàn của bình điều áp được thiết kế dựa trên phân tích sự cố mất toàn bộ dòng hơi nước đến tuabin khi lò phản ứng đang vận hành ở công suất 102%. Tốc độ xả của van được yêu cầu ít nhất là bằng tốc độ dòng lớn nhất từ đường ống nối bình điều áp với chân nóng vào bình điều áp trong suốt quá trình chuyển tiếp sự cố này. 1.2.3. Hệ thống van giảm áp tự động ADS Một số chức năng của hệ thống làm mát vùng hoạt thụ động của lò AP1000 được thiết kế dựa trên việc giảm áp của hệ thống chất làm mát lò phản ứng. Chức năng này được thực hiện nhờ các van giảm áp thụ động ADS (Automatic Depressurization System). Các van giảm áp tự động gắn với bình điều áp được sắp xếp thành 6 bộ song song, mỗi bộ gồm 2 van nối tiếp mở theo 3 giai đoạn. Khi áp suất hệ thống vượt quá áp suất phát động của các van này, thì hơi nước sẽ được xả vào bể chứa trữ nước tiếp nhiên liệu trong boongke lò IRWRT (In Containment Refueling Water Storage Tank). Ngoài ra, một bộ van giảm áp tự động giai đoạn thứ 4 được nối với mỗi chân nóng của lò phản ứng. Mỗi bộ gồm 2 nhánh song song, mỗi nhánh gồm 2 van đặt nối tiếp nhau. Hơi nước được xả từ các van này trực tiếp ra boongke lò. Bảng 1. Các thông số thiết kế của bình điều áp Bình điều áp Thể tích (ft3) 2.100 9
- Thể tích nước (ft3) 1.000 Đường kính trong (in.) 90 Chiều cao (in.) 607 Áp suất thiết kế (MPa) 17,23 Nhiệt độ thiết kế (°F) 680 Đường kính đường nối bình điều áp với chân nóng (in) 18 Chiều dày thành đường nối bình điều áp với chân nóng (in) 1,78 Đường kính đường ống phun giảm áp (in) 4 Áp suất van phun giảm áp (bắt đầu mở, MPa) 15,68 Áp suất van phun giảm áp (mở hoàn toàn, MPa) 16,03 Bảng 1. Các thông số thiết kế của van an toàn của bình điều áp Số lượng 2 Đường kính đầu van an toàn (in.) 14 Khả năng xả yêu cầu tối thiểu cho mỗi van (lb/h) 750.000 Áp suất thiết lập (MPa) 17,23 ± 0,27 Nhiệt độ thiết kế (0F) 680 Dung dịch Hơi bão hòa 2. CHƯƠNG 2. CHƯƠNG TRÌNH TÍNH TOÁN THỦY NHIỆT RELAP5 2.1. Giới thiệu về chương trình RELAP5 RELAP5 (Reactor Excursion and Leak Analysis Program) là phần mềm tính toán thủy nhiệt lò phản ứng, cho phép chúng ta phân tích an toàn, thiết kế lò phản ứng hoặc mô phỏng các sự cố trong trạng thái dừng và chuyển tiếp của hệ thống làm mát và vùng hoạt lò phản ứng. RELAP5 được phát triển và chỉnh sửa tại phòng thí nghiệm quốc gia Mỹ Idaho Nationl Engineering Laboratory (INEEL). Tới phiên bản RELAP5/Mod3 được phát triển cùng Ủy ban quy chế năng lượng nguyên tử Hoa Kỳ U.S Nuclear Regulatory Commission (U.S NRC) và một vài thành viên của ICAP (International Code Assessment and Application Program). Phiên bản RELAP5/Mod3 được dùng phân tích trong Luận văn này ra đời vào những năm 90 của thế kỷ trước. 10
- RELAP5 tạo nên từ hệ sáu phương trình cơ bản là phương trình bảo toàn khối lượng, động lượng và năng lượng cho hai pha nước và hơi/khí trong hệ thống không cân bằng. Trong trường hợp cụ thể, kết hợp với điều kiện biên các phương trình cơ bản được thiết kế để giải quyết các biến số phụ thuộc, trong đó có áp suất (P), nội năng theo pha (Ug, Uf), tỷ lệ khối lượng pha (αg, αf), vận tốc dòng các pha (Vg, Vf), chất lượng hơi (Xn) và nồng độ Boron (ρb). 2.2. Cấu trúc của chương trình RELAP5 2.2.1. Cấu trúc của chương trình Chương trình RELAP5 có cấu trúc “trên – xuống” và được tổ chức theo dạng môđun thể hiện trong Hình 2.1 Hình 2. Cấu trúc chương trình RELAP5 Cấu trúc chương trình ở mức cao nhất được chia thành 3 khối: + INPUT: Có nhiệm vụ đọc file Input,kiểm tra và xử lý dữ liệu nhập vào (New, Restart, Initialization…) + STRIP: Trích dữ liệu từ tệp RESTART. + TRNCTL: Có nhiệm vụ lựa chọn giải bài toán thủy nhiệt ở chuyển tiếp hay trạng thái dừng. 2.2.2. Cấu trúc tệp dữ liệu đầu vào Tệp dữ liệu đầu vào của RELAP5 mô tả toàn bộ các thuộc tính của hệ thống thủy nhiệt cần tính toán. Do đó, trước khi viết tệp dữ liệu đầu vào cần thu thập toàn bộ số liệu và hệ thống thủy nhiệt như: vật liệu trông cấu trúc nhiệt,hệ số dẫn nhiệt của cấu trúc nhiệt,tiết diện dòng chảy của ống dẫn nước, tốc độ bơm của bơm, chi tiết về vùng hoạt…Các thẻ trong tệp dữ liệu đầu vào của RELAP5 được tóm tắt trong Bảng 2.1 Bảng 2. Định dạng thẻ trong RELAP5 Thẻ Các thành phần được mô tả 1 – 199 Dữ liệu mô tả bài toán 200 – 299 Điều khiển bước thời gian 11
- 301 399 Hiệu chỉnh lỗi nhỏ 407 – 799 hoặc 20600000 – Đóng, ngắt 20620000 801 – 899 Dữ liệu ảnh hưởng 1001 – 1999 Yêu cầu đóng/ ngắt hoặc so sánh tập tin kết xuất CCCXXNN Dữ liệu cấu trúc thủy động 1CCCGXNN Dữ liệu cấu trúc nhiệt 6SSNNXXX Mô hình bức xạ 201MMMNN Thuộc tính của cấu trúc nhiệt 202TTTNN Bảng dữ liệu chung 20300000 – 20349999 Hình vẽ yêu cầu 205CCCNN Thành phần điều khiển hệ thồng 30000NNN Dữ liệu động học lò 2.3. Dữ liệu đầu vào của bình điều áp 2.3.1. Mô hình hóa bình điều áp của lò phản ứng AP1000 Hình 2. Mô hình hóa bình điều áp của lò phản ứng AP1000 Các bộ phận của bình điều áp lò phản ứng AP1000 được mô hình hóa thành các phần như trong Hình 2.2 và được mô phỏng bằng RELAP như trong Hình 2.3: P501 – Đường nối bình điều áp với chân nóng; SJ502 – Nút giữa bình điều áp với đường nối bình điều áp với chân nóng; P503 – Bình điều áp, được mô phỏng bằng một môđun dạng ống; 12
- V540 – Van an toàn của bình điều áp; TV541 – Bể chứa nước sau van an toàn của bình điều áp; V550, V551, V552 – Các van giảm áp tự động giai đoạn 1, 2 và 3 của bình điều áp; TV553, TV554, TV555 – Bể chứa nước sau van xả an toàn của bình điều áp; V511 – Van của hệ thống phun giảm áp của bình điều áp; TV510 – Đường ống của hệ thống phun giảm áp của bình điều áp; SJ509 – Nút giữa đường ống của hệ thống phun giảm áp của bình điều áp với chân lạnh; Hình 2. Sơ đồ nút hóa bình điều áp trong REALAP5 101 – Chân nóng gắn với bình điều áp, được mô phỏng bằng một môđun dạng đơn khối phụ thuộc thời gian; 500 – Nút giữa chân nóng và đường nối bình điều áp với chân nóng, được mô phỏng bằng một môđun dạng nút đơn phụ thuộc thời gian; 13
- 501 – Đường nối bình điều áp với chân nóng, được mô phỏng bằng một môđun dạng ống; 502 – Nút giữa bình điều áp với đường nối bình điều áp với chân nóng, được mô phỏng bằng một môđun dạng nút đơn; 503 – Bình điều áp, được mô phỏng bằng một môđun dạng ống. Đoạn bình hình trụ chứa nước được chia thành 6 đoạn có chiều cao như nhau và đoạn bình hình trụ chứa hơi nước được chia thành 7 đoạn có chiều cao như nhau; 540 Van an toàn của bình điều áp, được mô phỏng bằng một môđun dạng van điều khiển; 541 Bể chứa nước sau van an toàn của bình điều áp, được mô phỏng bằng một môđun dạng đơn khối phụ thuộc thời gian; 550, 551, 552 – Các van giảm áp tự động giai đoạn 1, 2 và 3 của bình điều áp, được mô phỏng bằng các môđun dạng van môtơ; 553, 554, 555 – Bể chứa nước sau van xả an toàn của bình điều áp, được mô phỏng bằng một môđun dạng đơn khối phụ thuộc thời gian; 511 – Van của hệ thống phun giảm áp của bình điều áp, được mô phỏng bằng một môđun dạng van điều khiển; 510 – Đường ống của hệ thống phun giảm áp của bình điều áp, được mô phỏng bằng một môđun dạng ống; 509 – Nút giữa đường ống của hệ thống phun giảm áp của bình điều áp với chân lạnh, được mô phỏng bằng một môđun dạng nút đơn; 141 – Chân lạnh (cấp nước cho hệ thống phun giảm áp), được mô phỏng bằng một môđun dạng đơn khối phụ thuộc thời gian. Để mô phỏng bình điều áp, chia bình thành 3 phần: đáy bình (phần hình chỏm cầu cụt ở đáy bình), thân bình (phần bình hình trụ) và nắp bình (phần hình chỏm cầu ở đỉnh bình). Đáy bình và nắp bình sẽ được quy đổi sang hình trụ với cùng độ cao, các thông số thu nhập và quy đổi được cho ở Bảng 2.3 Bảng 2. Thông số hình học của bình điều áp 14
- Giá trị thông số Giá trị đưa vào RELAP Thông số Giá trị thu Giá trị đổi đơn vị thập Chiều cao 607 in. H = 607 inch = 15,4178 m 15,4178 m Đường kính trong 90 in. Di = 90 inch = 2,286 m 2,286 m Tiết diện S = Di2 x π /4 = 4,1022 m2 4,1022 m2 Thể tích 2.100ft3 V = 2.100 ft3 = 59,4654 m3 59,4653 m3 Thể tích nước 1.000ft3 Vnước = 1.000 ft3 = 28,3168 m3 28,3168 m3 Thể tích hơi nước 1.100ft3 Vhơi=1.100 ft3 = 31,1485m3 31.1485 m3 Bán kính nắp (Rn) 1,26m 1,26 m Chiều cao nắp (Hn) 1,2295m 1,2295 m Thể tích nắp Vn= [(3RnHn)Hn2] π /3 = 4,0354 m3 4,0354m3 Tiết diện quy đổi(*) Sn = Vn/Hn = 3,2821 m2 3,2821m2 Đường kính nắp quy Dn= (4Sn/3,14)1/2 = 2,0448 m 2.0448m đổi (*) Chiều cao phần thân Hhơ i= (VhơiVn)/S = 6,6094 m 6,6094m chứa hơi nước Chiều cao phần thân 14,192m 14,192m và nắp Chiều cao phần thân Htn = 14,192 – Hhơi – Hn 6,3531m chứa nước = 6,3531 m Thể tích phần thân Vtn = Htn x S 26,0617m3 chứa nước = 26,0617 m 3 Vđ = Vnước – Vtn Thể tích đáy 2,2551 m3 = 2,2551 m 3 Chiều cao đáy Hđ = 15,4178 – 14,192 = 1,2258m 1,2258m 15
- Tiết diện đáy quy Sđ=Vđ/Hđ=3,3742 m2 3,3742 m2 đổi (*) Đường kính đáy quy Dđ=(4Sđ/3,14)1/2 = 2,0732 m 2,0732 m đổi(*) : Các thông số của nắp và đáy bình điều áp sau khi đã được quy đổi thành hình trụ với (*) thể tích và chiều cao của nắp và đáy bình điều áp không đổi. Trong mô phỏng, đoạn ống hình trụ chứa nước được chia thành 6 đoạn nhỏ hơn có chiều cao như nhau và đoạn ống hình trụ chứa hơi nước được chia thành 7 đoạn nhỏ hơn có chiều cao như nhau. Chiều cao mỗi đoạn nhỏ của phần chứa nước là: hn =6,3531 /6 = 1,0589m Chiều cao mỗi đoạn nhỏ của phần chứa hơi nước là: hh = 6,6094/7 = 0,9442m Bảng 2. Thông số thủy nhiệt của bình điều áp Giá trị thông số Thông số Đơn vị gốc Đơn vị trong RELAP Nhiệt độ (lối 653oF(*) T1=618,15 K(*) vào bình điều áp) Áp suất 2.241 psig P1=15451150,437Pa (lối vào bình điều áp) (*) : Vì luận văn lựa chọn đơn vị tính toán trong RELAP5 là hệ SI Bảng 2. Tính độ giảm áp dọc theo bình điều áp Đoạn (kg/m3) ∆H ∆P (Pa) P (Pa) T (K) 1 0,6129 617,6 594,89 3646,0808 15447504,3562 2 1,14235 595,05 6797,5537 15440706,8025 617,60 3 1,0589 595,18 6302,3610 15434404,4415 617,57 4 1,0589 595,30 6303,6317 15428100,8098 617,54 5 1,0589 595,41 6304,7965 15421796,0133 617,50 16
- 6 1,0589 595,53 6306,0672 15415489,9461 617,47 7 1,0589 595,65 6307,3379 15409182,6083 617,44 8 0,9442 595,76 5625,1659 15403557,4424 617,40 9 0,9442 595,87 5626,2045 15397931,2378 617,37 10 0,9442 595,97 5627,1487 15392304,0891 617,34 11 0,9442 596,07 5628,0929 15386675,9961 617,32 12 0,9442 596,18 5629,1316 15381046,8646 617,29 13 0,9442 596,28 5630,0758 15375416,7888 617,26 14 0,9442 596,38 5631,0200 15369785,7689 617,23 15 1,1442 596,49 6825,0386 15362960,7303 617,20 2.3.2. Dữ liệu đầu vào của van an toàn Bảng 2. Thông số hình học của van an toàn Giá trị thông số Giá trị đưa vào RELAP Thông số Giá trị Giá trị đổi đơn vị thu thập Đường kính trong 14 in. Di=14 inch =0,3556 m 0,3556 m Tiết diện S = Di2*π/4 = 0,0993 m2 0,0993m2 Bảng 2. Thông số thủy nhiệt của van an toàn Giá trị thông số Thông số Đơn vị gốc Đơn vị trong RELAP Nhiệt độ 680oF 633,15 K 17
- Áp suất mở hoàn toàn 2.575 psia 17.753.999,996 Pa 18
- 3. CHƯƠNG 3. KẾT QUẢ TÍNH TOÁN 3.1. Kết quả trạng thái dừng Trước khi thực hiện tính toán quá trình chuyển tiếp sự cố mở vô ý van xả an toàn của bình điều áp, trạng thái dừng được thiết lập và kiểm tra. Trạng thái dừng của lò phản ứng tính toán bằng chương trình RELAP5 được chỉ ra trong các hình dưới đây. Các kết quả này chỉ ra rằng lò đã đạt trạng thái dừng (là trạng thái nhà máy hoạt động bình thường, các thông số ổn định theo thời gian) và sẵn sàng cho việc tính toán quá trình chuyển tiếp sự cố. Hình 3. Áp suất bình điều áp ở trạng thái dừng Sau khoảng 30 giây thì áp suất trong bình điều áp đã đạt được trạng thái dừng. Áp suất bình điều áp ở trạng thái dừng cỡ 15,47 MPa phù hợp với giá trị lý thuyết là 15,51 MPa Hình 3.1. Nhiệt độ nước và hơi bão hào trong bình điều áp cỡ 617,75 độ K Hình 3.2. Ngoài ra, xem xét hoạt động của các van tiêm, van an toàn, van giảm áp thụ động thì chúng được đóng hoàn toàn. 19
- Hình 3. Nhiệt độ nước và hơi trong bình điều áp ở trạng thái dừng 3.2. Kết quả ở trạng thái chuyển tiếp Bảng 3. Diễn biến các sự cố Sự kiện Thời gian (giây) Van an toàn bình điều áp mở vô ý 0.0 Áp suất giảm đến tín hiệu dập lò 18.55 Hạ thanh điều khiển dập lò 20.55 Bắt đầu bơm nước vào vùng hoạt 23.23 Kết thúc thời gian nghiên cứu 35 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt luận văn thạc sĩ khoa học xã hội và nhân văn: Ảnh hưởng của văn học dân gian đối với thơ Tản Đà, Trần Tuấn Khải
26 p | 791 | 100
-
Tóm tắt luận văn thạc sĩ quản trị kinh doanh: Hoạch định chiến lược kinh doanh dịch vụ khách sạn tại công ty cổ phần du lịch - dịch vụ Hội An
26 p | 422 | 83
-
Tóm tắt Luận văn Thạc sĩ: Hoàn thiện công tác thẩm định giá bất động sản tại Công ty TNHH Thẩm định giá và Dịch vụ tài chính Đà Nẵng
26 p | 509 | 76
-
Tóm tắt luận văn thạc sĩ khoa học: Nghiên cứu thành phần hóa học của lá cây sống đời ở Quãng Ngãi
12 p | 547 | 61
-
Tóm tắt luận văn Thạc sĩ Luật học: Hoàn thiện hệ thống pháp luật đáp ứng nhu cầu xây dựng nhà nước pháp quyền xã hội chủ nghĩa Việt Nam hiện nay
26 p | 533 | 47
-
Tóm tắt luận văn Thạc sĩ Luật học: Cải cách thủ tục hành chính ở ủy ban nhân dân xã, thị trấn tại huyện Quảng Xương, Thanh Hóa
26 p | 346 | 41
-
Tóm tắt luận văn Thạc sĩ Quản trị kinh doanh: Giải pháp tăng cường huy động vốn tại Ngân hàng thương mại cổ phần Dầu khí Toàn Cầu
26 p | 313 | 39
-
Tóm tắt luận văn thạc sĩ kỹ thuật: Nghiên cứu xây dựng chương trình tích hợp xử lý chữ viết tắt, gõ tắt
26 p | 334 | 35
-
Tóm tắt luận văn Thạc sĩ Luật học: Xây dựng ý thức pháp luật của cán bộ, chiến sĩ lực lượng công an nhân dân Việt Nam
15 p | 353 | 27
-
Tóm tắt luận văn Thạc sĩ luật học: Pháp luật Việt Nam về hoạt động kinh doanh của công ty chứng khoán trong mối quan hệ với vấn đề bảo vệ quyền lợi của nhà đầu tư
32 p | 250 | 14
-
Tóm tắt luận văn Thạc sĩ Khoa học: Nghiên cứu ảnh hưởng của quản trị vốn luân chuyển đến tỷ suất lợi nhuận của các Công ty cổ phần ngành vận tải niêm yết trên sàn chứng khoán Việt Nam
26 p | 290 | 14
-
Tóm tắt luận văn Thạc sĩ Luật học: Tăng cường trách nhiệm công tố trong hoạt động điều tra ở Viện Kiểm sát nhân dân tỉnh Bắc Giang
26 p | 233 | 9
-
Tóm tắt luận văn Thạc sĩ Giáo dục học: Biện pháp quản lý đổi mới phương pháp dạy học các môn Khoa học xã hội và Nhân văn ở trường trung học phổ thông trên địa bàn tỉnh Kon Tum
26 p | 110 | 9
-
Tóm tắt luận văn Thạc sĩ Khoa học: Lý thuyết độ đo và ứng dụng trong toán sơ cấp
21 p | 223 | 9
-
Tóm tắt luận văn Thạc sĩ Quản trị kinh doanh: Phát triển thương hiệu Trần của Công ty TNHH MTV Ẩm thực Trần
26 p | 104 | 8
-
Tóm tắt luận văn Thạc sĩ luật học: Pháp luật về quản lý và sử dụng vốn ODA và thực tiễn tại Thanh tra Chính phủ
13 p | 269 | 7
-
Tóm tắt luận văn Thạc sĩ Khoa học: Các cấu trúc đại số của tập thô và ngữ nghĩa của tập mờ trong lý thuyết tập thô
26 p | 236 | 3
-
Tóm tắt luận văn Thạc sĩ Khoa học: Nghiên cứu tính chất hấp phụ một số hợp chất hữu cơ trên vật liệu MCM-41
13 p | 204 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn