BÀI TẬP CHUỖI LŨY THỪA

Bài tập

n

1. Tìm bán kính hội tụ của các chuỗi sau:

n

2

( + -

n

+ 1

) 1

n

(

)

3

2

( (

=

) 1 ) n 2 !!

n

=

0

(cid:0) (cid:0) - n n 2 - b x (cid:0) ) 2 a x (cid:0) )

n

2

- n n

n

2

n

1

n

(cid:0) (cid:0) -

(

) 1

- - c (cid:0) d ) (cid:0) )

n

n

= 1

= 1

n 1 � � x 1 � � n � �

+ n

3

1

2

n

n

- (cid:0) (cid:0)

(

) 1

n

+ 1

=

f x (cid:0) ) + e x (cid:0) )

n

2

=

n

2

n + x n 3 . 22 n -� � n 1 � �+� � n 2 n 8 3ln

n

n

2

( + -

(cid:0)

Hướng dẫn ) 1

n

n 2

3

2

=

x a (cid:0) )

n

2

n

2/3

1/2

- n n

n

- n n = = R (cid:0) (cid:0) (cid:0) (cid:0) lim n lim n | | 1 a n

n 1 � � + -� � 2 � �

n

2

/3

/ 1 2

2 1 n

n

/ 1

- n = =

n

(cid:0) (cid:0) lim n 1 2

n �� � 1 �� � 2 � � � � � + -� 2 1 � �

n

+ 1

(cid:0) - n

(

)

( (

=

- b x (cid:0) ) 2

) 1 ) !!

n

0

n 2

(

) 2 !!

(

+ 1

+ - n 2 = = R . (cid:0) (cid:0) (cid:0) (cid:0) lim n lim n n n 1 ) n 2 !! a n a n

)

( . 2

- n 1 + = +(cid:0) n 2 (cid:0) (cid:0) = lim n n

n

1

n

(cid:0) -

(

) 1

n

= 1

- - c (cid:0) )

2 � � x 1 � � n � �

+ 1

- n 2 = = = R . 1 (cid:0) (cid:0) (cid:0) (cid:0) lim n lim n - + n n n 1 1 a n a n

n

2

n

2

(cid:0) (cid:0)

= (cid:0) d (cid:0) ) a x n

n

n

= 1

= 1

n x n 3 .

n

= = n R 3= (cid:0) (cid:0) (cid:0) (cid:0) lim 3n n lim n

1 a n

2

n

(cid:0)

(

) 1

n

+ 1

+ e x (cid:0) )

=

n

2

n

n

+ 1

n + n 8 3ln

n

n

+ n 8 = = R (cid:0) (cid:0) (cid:0) (cid:0) 3ln 2 lim n lim n

n 1/ � � �

n 1 a n

n

08.8 1

� +� 8 8 3 � = = = 8 (cid:0) (cid:0) lim n

n ln n 8 2 n

+ n

3

1

n

- (cid:0)

=

n

2

22 n -� � n 1 � �+� � n 2

f x (cid:0) )

+ n

1

3 n

-

n

22 n +� � n 2 � �-� � n 1

= = R (cid:0) (cid:0) (cid:0) (cid:0) lim n lim n

1 a n

+ n

1

3 n

-

= +

(cid:0) (cid:0)

2

1

n

+ n

1

-

1

3 n

3 2 . 1

- -

6e=

=

(cid:0) (cid:0)

n � 3 � �

22 n 3 � � lim 1 �-� � n n � � 3 � + � lim 1 � -� n � n �

1

� n � � �

n

n

2. Tìm miền hội tụ của các chuỗi sau:

(

n

(cid:0) (cid:0) -

) 1

) 1 +

=

n

- a (cid:0) ) b x (cid:0) )

(

0

n

= 1

n +� n 3 � ( �+� � n 2 1 �

n 2 x ) n 5 .3

n

2

n

n

n

+ 1

(cid:0) (cid:0)

(

)

2

=

n 3 n

n

n

0

= 1

+ + c x d (cid:0) (cid:0) ) 2 5 )

n

� 2 � n 3 � � x � �

(

)

(cid:0) -

n

e (cid:0) )

n

= 1

x ( n 8 ) 2 !

Hướng dẫn

n

n

(

(cid:0) -

) 1 +

n

a (cid:0) ) 3R =

(

= 1

n 3

n x ) 5 . 2

(

n

n

- Khoảng hội tụ:

)3,3 )

(

) 1

(cid:0) (cid:0) - -

( +

= x = - 3

n

n

+

� (

� (

)

= 1

= 1

n 1 n 3 ) n 5 .3 2 2 5

(cid:0)

(cid:0) Chuỗi phân kỳ vì cùng bản chất với

1 1/2 n n = 1

n

n

(

(cid:0) -

) 1 +

n

(cid:0)

(

= 1

n

n 2

(

(cid:0) (cid:0) - - x ) n 5 .3 (

) 1 +

n

n

= x = 3

� (

)

� (

= 1

= 1

) n n 1 3 ) + n 5 .3

n n 2 5 2

na

= (cid:0) 0 Chuỗi đan dấu với

+

(

)

1 n 2 5

] 3,3

Chuỗi ht theo tc Leibnitz. ( MHT D = - :

n

n

(cid:0)

) 1

n

= 1

b (cid:0) ) 2R =

+� n 3 � - ( x �+� � n 2 1 �

) = -

(

)

- Khoảng hội tụ: ( + 1 2,1 2 1,3

x = - 1

n =

(cid:0) (cid:0) (cid:0)

)

) n = 1

- - 2

� a n

n

n

n

= 1

= 1

= 1

n � ( � �

n � ( � �

+ + + 3 + 1 6 1 n � � � n 2 � n 2 � � � n 2 �

n =

(cid:0) (cid:0) (cid:0)

)

) n = 1

- - 2

� a n

n

n

n

= 1

= 1

= 1

n � ( � �

n � ( � �

+ + + 3 + 1 6 1 n � � � n 2 � n 2 � � � n 2 �

+

n � � = 1 � � � �

n � � �

n

+ 1

5 + n 6 1 2 1 +� n 2 � + n 2 �

n

5/2

(cid:0) (cid:0) = (cid:0) (cid:0) (cid:0) (cid:0) e

n 2 � 5 � �

1

5 . + � n 1 2 � � �

� 5 � + � 1 � +� n � 2 �

na

(cid:0) 0 Chuỗi pk theo đk cần

n

n

(cid:0)

) 1

n

= 1

(cid:0)

+� n 3 � - ( x �+� � n 2 1 �

x = 3

n

(cid:0) (cid:0) (cid:0)

= =

� a n

n

n

n

= 1

= 1

= 1

n � 2 � �

n � � �

+ + + 3 + 1 6 1 n � � � n 2 � n 2 � � � n 2 �

na

)

( MHT D = - :

(cid:0) 0 Chuỗi pk theo đk cần

1,3

2

n

n

(cid:0)

(

)

=

n

0

+ c x (cid:0) ) 2 5 0R =

Chuỗi chỉ hội tụ tại: x = - 5

n

n

2

n

+ 1

n 2 .

+ 1

(cid:0) (cid:0)

2

2

n

= 1

= d (cid:0) ) (cid:0)

n

= 1

n �+ 3 x � n �

n n 3 . � 2 � n 3 � � � � �+ 9 n x � n �

n

R =

n

2

n 2 .

(cid:0)

2

x = - (cid:0)

n

= 1

1 3 1 3 n n 3 .

(cid:0)

n

= 1

= - (cid:0)

+ � �- 1 9 � � n 3 � � ) ( n �- 1 � 2 n � � � n 2 � � +� � � 9 � �� �

HT HT HT

n

n

2

n 2 .

(cid:0)

2

9 x = (cid:0)

n

= 1

1 3 n n 3 . + � � 1 � � n 3 � �

(cid:0)

= (cid:0)

n

= 1

n � 2 � � +� � � 9 � �� �

1 2 n � � � �

HT HT HT

= - MHT D :

1 1 ,   3 3 � � � � � �

n

(

)

(cid:0) -

n

e R = +(cid:0) (cid:0) )

n

= 1

)

( MHT D = - :

x ( n 8 ) 2 !

(cid:0) +(cid:0) ,

3. Tìm khai triển Maclaurin của các hàm số sau:

2

)

)

( a f x )

( b f x )

x 2 = = x sin

(

) 2

- x 1

)

(

)

)

( c f x )

( ln 1 2

= - - x x 2

)

( d f x )

=

x 2 + x 3

2

(

)

Hướng dẫn x

= x fa ) s in

)

(

= - x 1 cos 2

n

2

1 2

(

2

(cid:0)

(

) 1

=

) x 2 ( ) n 2 !

n

0

= - (cid:0)

� 1 1 -� � 2 2 � � � � �

(

)

x 2 = x fb )

) 2

(

-

)

(

) (

) (

)

2

3

)

(

(

)

(

)

- - - - - x ) ( 1 ( 2 3 2 4 = + - - - - L + x x + x x 2

n

2

3

2! 3 3! � � �

(

= + + + + + + +

)

) 1

L L x x x x n x � 1 2 � � ( 2 1 2 3 4

( -�

)1,1

x- ĐKKT:

)

(

)

)

( c f x )

( ln 1 2

n

= - - x x 2

(

)

n

1

(

)

(

) 1

(cid:0) - - (cid:0) = - - - < - 1 2 1x x (cid:0) 2

n

= 1

x 2 n

n

n

n

+ 1

+ 1

(cid:0)

= + n -

(

)

x x (cid:0) 2 2

n

= 1

1 n

+ 1

n

n

1

n

(cid:0) - (cid:0) -

+ x = (cid:0) (cid:0)

=

n

= 1

n

2

- 2n n 2 n x 1

4. Tìm khai triển Taylor của các hàm số sau:

)

( a f x )

0

1 = = x , 3

- x 1

p

)

( b f x )

= = x x sin ,

2

p p

)

( c f x )

= - x arctan

4 � � = x , � � 4 � �

4. Tính tổng của các chuỗi lũy thừa sau:

n

(cid:0)

( -�

) 1,1

x (cid:0) 1) ,

)

( n n

n

= 1

+ + n 2 x ) ( 1

n

1

)

- (cid:0)

(cid:0) 2)

( n x n

n

= 1

+ + ( 3 1)!

Hướng dẫn

n

( -�

(cid:0)

) 1 1,

(cid:0) ) 1 x ,

)

( n n

n

= 1

+ + n 2 x ) ( 1

n

(cid:0)

)

( S x

= - (cid:0) .

n

= 1

1 + 1 + n n n 1 + 1 2 2 1 1 � . � 2 � � x � �

n

n

n

(cid:0) (cid:0) (cid:0)

= -

n

n

n

= 1

= 1

= 1

+

x x � � + n n x � + n 1 2 1 + 1 2 2

n

+ 1

2

(cid:0) (cid:0)

)

( ln 1

( - � x ,

} { ) 1,1 \ 0

= - - - x

n x + � + n

n

n

= 1

= 1

+ 1 x 1 1 . 2 x x � n 1 2 2 1 2

+

n

+ 1

2

(cid:0) (cid:0)

)

( ln 1

( - � x ,

) } { 1,1 \ 0

= - - - x

n x + � + n

n

n

= 1

= 1

+ 1 x 1 1 . 2 x x � n 1 2 2 1 2

n

n

(cid:0) (cid:0)

)

{

( - � x

( ln 1

} ) 1,1 \ 0

2

=

=

= - - - x ,

n

n

2

2

1 x x + � n x � n 1 x 2 1 2

)

)

( ln 1

( ln 1

2

= - - - - - - x x x � � � � 1 x 1 2

)

{

( ln 1

} ) 1,1 \ 0

2

+ - - - - x x

1 x 2 x 2 � � � � ( - � x , � �

)

) + - x

( S x

( - � x ,

} { ) 1,1 \ 0

2

= - -

1 x 2 3 4 1 x 2 1 1 � - + � x 2 � � ( ln 1 � �

= x 0

n

(cid:0)

(

)

= = (cid:0) S 0 0

)

( n n

n

= 1

+ + n 2 0 ) ( 1

n

1

)

- (cid:0)

( n x n

(cid:0) 2) MHT D R= :

n

= 1

( 3 1)!

n

1

)

)

( S x

- (cid:0) + - + + ( n + x 3 = (cid:0)

n

= 1

1)!

n

n

1

1

) ( 1 1 + n ( )

)

- - (cid:0) (cid:0) + x

( �

( �

- =

n

n

= 1

= 1

n

n

+ 1

x n 3 n ! + 3 + 1)! (

)

)

(cid:0) (cid:0) + x

2

( �

= -

(

)

n

n

= 1

= 1

1 + 1 + x n x ( n 3 3 ! + 3 ) + 1 ! x 3

( � x (cid:0)

- 3

n

n

+ 1

)

)

(cid:0) (cid:0) + x

2

( �

( �

= -

(

)

n

n

= 1

= 1

n

1 + 1 + x n x ( n 3 3 ! + 3 ) + 1 ! x 3

(

)

+

x

3

(cid:0) + x

= - -

(

e (cid:0)

) 1

2

=

(

)

n

2

+

+

x

x

3

3

1 + 1 + n x 3 ! 3 x 3

= - - - - - -

(

(

)

e e x

) 1

2

1 3 x (cid:0) 3

(

)

1 + 1 + x 3 x 3

n

1

(

- (cid:0)

) - = 3

(

(cid:0) S

n

= 1

n .0 + n = ) 1 ! 1 2

4. Tính tổng của các chuỗi số sau:

(cid:0) (cid:0) -

(

n

= 1

n

) n 3 (

= 1

(cid:0) 1) (cid:0) 2) n n - - 4 3 ( ) 1 + n 1)! 7

(cid:0) (cid:0)

1 (cid:0) 4) (cid:0) 3) 1 n

(

n

(

= 1

) 3 (2 )!!

n

= 1

) n 3 (2

- - n + n 1)!

(cid:0)

(cid:0) 5)

)

( n n n = 1

+ + n 2 1 ) ( 1

(cid:0)

n

(cid:0) 1)

(

)

n

= 1

n

n

+ 1

- 1 + n 3 ) 1 !

)

(cid:0) (cid:0) - - ( )

( � 3

= = -

( � (

n

n

= 1

= 1

1/ 3 + n 1)! ( 1)!

)

n = -

=

(cid:0) - 1/ 3 + n ( - = - - + 1/3 (cid:0) (cid:0) (cid:0) 3 3 . 1

n

2

1/ 3 n ! 1 3 � e � � �

(cid:0) (cid:0) -

(

= - - (cid:0) (cid:0) 2) + n 3 3 n n

n

n

= 1

= 1

n 1 � � ) - � � 7 7 � �

- 4 3 ( ) 7

(cid:0) (cid:0)

(

) 1

n

n

= 1

= 1

n -� � 1 + � � 7 � �

n 1 � � � � 7 � �

= - - + n (cid:0) (cid:0) 3 7

-

(

)

= - - S 3 + 1/ 7 7.

Trong đó S(-1/7) tương ứng với

1/ 7 + 1 1/ 7

(cid:0)

)

(

( S x

) 1 n x

n

= 1

= + (cid:0) n

Tính S(x)

x

(cid:0)

n

+ 1

( -�

) ( S t dt

) 1,1

0

n

= 1

x = = (cid:0) x x x . , (cid:0) - x 1

2

2

(cid:0)

)

( �

( S x

) 1,1

2

= - � x ,

- 2 ( x ) x 1 � � - x x = � �- x 1 � �

(

(

)

) 2. 1/ 7 ( +

)

2 7 - = - 8

n

= 1

(cid:0) - - - - 7 = - (cid:0) � 3 n n 1/ 2 - 4 3 ( ) 11 64 7 1 1/ 7

(cid:0)

1

(cid:0) 3)

(

n

= 1

) n 3 (2

+ 1

+ - n 1) !

(cid:0) (cid:0)

) n 1 .

) n 1 .

( �

( �

= - - 3

n

n

= 1

= 1

n

+ 1

2

1

+ 2

n 2 � � 1 � � 3 � � = ( ) + n 1 ! 2 (

n 2 � � 1 � � 3 � � ( ) n 1 ! ) (

0

(cid:0) 1/ 3

(

(

) n 1 .

) 1

= - - - (cid:0) 3

n

) 1/ 3 ( ) + 1 !

0

2 1!

� � � � � � � � � = n �

= -

1 3 1 3 � 3 sin � � � � �

(cid:0)

(cid:0) 4) 1 n

(

n

= 1

) 3 (2 )!!

- n

(cid:0)

n

n

= 1

n

= (cid:0) 1 n -

( (

) n 3 .2 . ! )

1/6

(cid:0) - - = = - (cid:0) e 1

n

= 1

1/ 6 n !

(cid:0)

(cid:0) 5)

)

( n n n = 1

+ + n 2 1 ) ( 1

Không dùng chuỗi lũy thừa, chỉ qua giới hạn của dãy tổng riêng phần Sn

= -

)

( n n

+ + 1 + n n n 1 1 + n 1 ) ( 1 2 1 1 2 + 1 2 2

= + + + ... S n a n a 1 a 2

nS

= ...

1 1 2 k 1 n 1 + + + + 3 1 2 1 2 � � �

- -

1 1 + + + + ... n n 2 1 3 � 1 � � � � � 1 � �+ 1 �

+ + + + + ...

1 + 1 + 1 n n n 1 + 1k 1 1 2 2k + 1 2 1 3 1 2 � � � � � �

= + -

1 + 1 + 1 + n n 1 2 1 + 1 2 1 1 � � � + 1 � � � 2 2 � � � 1 � � + � � n 2 � � � � �

n(cid:0)

(cid:0) (cid:0) (cid:0) (cid:0) (cid:0)

1 2 1 - = 2 1 4 1 � �+ 1 � � 2 � �