intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Giải tích 12 chương 1 bài 2: Cực trị hàm số

Chia sẻ: Nguyễn Đông | Ngày: | Loại File: PPT | Số trang:20

437
lượt xem
41
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề giúp cho học sinh nhận biết các khái niệm cực đại, cực tiểu, biết phân biệt các khái niệm lớn nhất, nhỏ nhất. Nắm vững các điều kiện đủ để HS có cực trị. Sử dụng thành thạo các điều kiện đủ để tìm cực trị của hàm số, hiểu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm. Và học sinh biết ứng dụng kiến thức đã học để làm bài tập trong SGK và nâng cao. Hãy tham khảo những bài giảng Cực trị hàm số - Toán Giải tích lớp 12. Chúc quý thầy cô giáo và các em có tiết học và giảng dạy thú vi.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Giải tích 12 chương 1 bài 2: Cực trị hàm số

  1. Bài giảng toán 12 đại số chương 2 bài 2
  2. Bài toán: 1. Dựa vào đồ thị của các hàm số sau, hãy chỉ ra các điểm tại đó mỗi hàm số sau có giá trị lớn nhất (nhỏ nhất) trong các khoảng đã cho. a) y=-x2+1 trong khoảng (-;+) x 1 3 3  b) y  .(x  3) trong các khoảng  ;  &  ;4  2 3 2 y 2 2 y 2  4 x −6 −4 −2 2 4 6 8 2 −2 x −2 2 4 6 8 10 −4 −2 2. Lập bảng biến thiên của các hàm số trên tương ứng với các khoảng đã cho. x - 0 + x 1/2 1 3/2 3 4 y’ y’ 1 4/3 y y 0
  3. 1. Khái niệm cực trị của hàm số: Định nghĩa: Giả sử hàm số f xác định trên tập hợp D và x0  D a) x0 là điểm cực đại của hàm số f nếu tồn tại một khoảng (a;b) chứa x0 sao cho (a;b)  D và f(x) < f(x0) với mọi x  (a;b) \{x0}. • Ta nói hàm số đạt cực đại tại x0 • f(x0) gọi là giá trị cực đại của hàm số ,ta viết yCĐ hoặc fCĐ
  4. 1. Khái niệm cực trị của hàm số: Định nghĩa: Giả sử hàm số f xác định trên tập hợp D và x0  D b) x0 là điểm cực tiểu của hàm số f nếu tồn tại một khoảng (a;b) chứa x0 sao cho (a;b)  D và f(x) > f(x0) với mọi x  (a;b) \{x0}. • Ta nói hàm số đạt cực tiểu tại x0 • f(x0) gọi là giá trị cực tiểu của hàm số ,ta viết yCT hoặc fCT Hàm số đạt cực đại hoặc cực tiểu tại xo, ta gọi là hàm số đạt cực trị tại xo. f(xo) gọi là giá trị cực trị của hàm số.
  5. 2. Điều kiện cần để có cực trị: Định lý 1: Nếu f có đạo hàm tại xo và đạt cực trị tại xo thì f’(xo) =0 Chứng minh: (xem SGK) Chú ý : Đảo lại của định lí là sai
  6. Ví dụ 1: Hàm số y = x3 tăng trên R . Có y’=3x2, .y’=0 x=0. Hàm số y=x3 có đồ thị: y 4 2 x −6 −4 −2 2 4 6 8 −2 Hàm số có đạo hàm triệt tiêu tại x=0 nhưng không có cực trị tại x=0.
  7. Ví dụ 2: b) Hàm số y  3 x .(5  x) có đồ thị: 2 y 6 4 2 3 x 2 (5  x) x −6 −4 −2 2 4 6 8 Hàm số đạt cực đại tại x=2 ,cực tiểu tại x=0. Chú ý: là hàm không có đạo hàm tại x=0 Như vậy: Hàm số có thể đạt cực trị tại một điểm mà tại đó đạo hàm của hàm số bằng không hoặc không xác định
  8. 3)Điều kiện đủ để hàm số đạt cực trị: Định lý 2: (điều kiện đủ 1) Giả sử hàm số f liên tục trên khoảng (a; b) chứa điểm x0 và có đạo hàm trên các khoảng (a; x0) và ( x0;b). Khi đó: a) Nếu f’(x) >0; x(a; x0) và f’(x)
  9. Ta có BBT: x a x0 b y’ + - y CĐ x a x0 b y’ - + y CT Chú ý: Tại x0 chỉ cần hàm số liên tục, không nhất thiết có đạo hàm
  10. Quy tắc 1: Để tìm cực trị hàm số ta làm các bước sau: 1) Tìm y’ \ 0 2) Tìm các điểm xi (i=1, 2,...) tại đó đạo hàm của hàm số bằng 0 hoặc hàm số liên tục nhưng không có đạo hàm. 3) Lập bảng biến thiên, xét dấu đạo hàm. 4) Từ Bảng biến thiên suy ra các điểm cực trị
  11. 3 Ví dụ 3: Tìm các điểm cực trị của hàm số: y  3x   5 TXĐ: D=R\{0} x 3 3(x 2  1) x  0 Đạo hàm: y  3  2  0   x  1 2 x x Bảng biến thiên x - -1 0 1 + y’ + 0 - - 0 + y -1 11 • Hàm số đạt cực đại tại x=-1,yCĐ=-1 và đạt cực tiểu tại x=1,yCT=11 Ví dụ 4: Áp dụng quy tắc 1 để tìm cực trị của hàm số: y=│x│
  12. Định lý 3: (điều kiện đủ 2) Giả sử hàm số f có đạo hàm cấp 1 trên khoảng (a; b) chứa điểm x0, f’(xo)=0 và f’’(xo)≠0 tại điểm xo. a) Nếu f’’(x0) 0 thì hàm số f đạt cực tiểu tại điểm xo. Chú ý: Nếu f’’(x0)=0 thì trở lại dấu hiệu đủ thứ 1 Ví dụ 5: Hàm số y =x4 có y’’(0)=y’(0)=0 ,dấu hiệu đủ thứ 1 cho ta hàm đạt cực tiểu tại 0
  13. Quy tắc 2: Để tìm cực trị hàm số ta làm các bước sau: 1) Tìm f’(x) \ 0 2) Tìm các nghiệm xi (i=1, 2,...) của phương trình f’(x)=0. 3) Tìm f”(x) và tính f”(xi). * Nếu f’’(xi) 0 thì hàm số f đạt cực tiểu tại điểm xi.
  14. Ví dụ 6: Dùng dấu hiệu đủ 2 tìm cực trị hàm số: 1) y= x4-2x2-1 2) y= sin2x+x. Bài tập : 1) BTSGK 2) Tìm m để hàm số y= x3-6x2+3(m+2)x-m-6. a) Hàm số có cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị . b) Có đồ thị cắt trục hoành 3 điểm phân biệt, 1 điểm, 2 điểm.
  15. Quy tắc 1: Để tìm cực trị hàm số ta làm các bước sau: 1) Tìm y’ 2) Tìm các điểm xi (i=1, 2,...) tại đó đạo hàm của hàm số bằng 0 hoặc hàm số liên tục nhưng không có đạo hàm. 3) Lập bảng biến thiên, xét dấu đạo hàm. 4) Từ Bảng biến thiên suy ra các điểm cực trị
  16. Quy tắc 2: Để tìm cực trị hàm số ta làm các bước sau: 1) Tìm f’(x) \ 0 2) Tìm các nghiệm xi (i=1, 2,...) của phương trình f’(x)=0. 3) Tìm f”(x) và tính f”(xi). * Nếu f’’(xi) 0 thì hàm số f đạt cực tiểu tại điểm xi.
  17. Dạng 1: Tìm cực trị của hàm số. PP: Dùng dấu hiệu 1 hoặc dấu hiệu 2. Dạng 2: Tìm điều kiện của tham số để hàm số đạt CĐ, CT hay đạt cực trị tại một điểm. PP: B1: Dùng dấu hiệu 1 lập phương trình hoặc dấu hiệu 2 lập hệ gồm phương trình và bất phương trình ẩn là tham số. B2: Giải để tìm giá trị của tham số. B3: Thử lại (khi sử dụng dấu hiệu 1). Dạng 3: CMR hàm số luôn có 1 CĐ và 1 CT. PP: Ta CM y’=0 luôn có 2 nghiệm phân biệt và qua 2 nghiệm đó y’ đổi dấu 2 lần
  18. Bài 1: Tìm cực trị của hàm số. 1 3 4 1)y  x  2x 2  3x  1 2)y  x   3 3 x x 2  2x  3 3)y  x 4  2x 2  3 4)y  x 1 Bài 2: Tìm cực trị của hàm số. 1)f (x)  x  sin 2x  2 2)f (x)  3  2cos x  cos 2x
  19. x 2  mx  1 Bài 3: Cho hàm số: y  . Tìm m để xm 1) Hàm số đạt CT tại x=2. 2) Hàm số đạt CĐ tại x=2. Bài 4: Cho hàm số:y  x 3  3x 2  3(m2  1)x  3m2  1. Tìm m để 1) Hàm số có 1 CĐ và 1 CT. 2) Hàm số có 1 CĐ, 1 CT và các cực trị của đồ thị hàm số cách đều gốc tọa độ.
  20. x 2  (m  1)x  m  1 Bài 5: Cho hàm số: y  . CMR hàm số đã cho x 1 luôn có 1 CĐ, 1CT và bình phương khoảng cách giữa 2 cực trị của hàm số bằng 20. Bài 6: Cho hàm số: y  x 2  2(m  1)x  m 2  4m . Tìm m để x2 hàm số có 1 CĐ, 1 CT và các điểm cực trị của đồ thị hàm số cùng với gốc tọa độ tạo thành một tam giác vuông tại O.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2