CHƯƠNG II HYDRO VÀ NƯỚC

Hidro

Cấu tạo nguyên tử

Tính chất lý học

Tính chất hóa học

Trạng thái thiên nhiên và phương pháp điều chế

Hidrua của các nguyên tố

Hidrua ion

Hidrua cộng hóa trị

Hidrua kiểu kim loại

Nước

Tính chất lý học

Tính chất hóa học

Trạng thái thiên nhiên và phương pháp tinh chế

Sự gây ô nhiễm môi trường nước

Xử lý nước thải

Hidro peoxit

Department of Inorganic Chemistry - HUT

Department of Inorganic Chemistry - HUT

1. H – e = H+ ΔHo = 1312 kJ/mol

2. H + e = H- ΔHo = -67 kJ/mol

3. Tạo nên cặp e chung cho liên kết cộng hóa trị

H giống halogen về khả năng nhận e thành ion H- và có đặc điểm:

-Ái lực e của H bằng gần 1/5 so với ái lực e của halogen.

-Ion H- có cấu trúc e của He (1s2)

-Ion H- tự do có khả năng tồn tại trong hidrua muối như KH, CaH2

H giống kim loại kiềm về khả năng mất e thành cation nhưng khác ở: -Năng lượng ion hóa lớn gấp vài ba lần so với kim loại kiềm. -Proton bé hơn nhiều so với nguyên tử (1.6-1.7.10-5 Å << 1.2 Å) và mang điện tích dương  làm

nhiễu loạn đám mây e của các nguyên tử xung quanh.

-Proton không thể tồn tại một mình mà luôn kết hợp với nguyên tử hay phân tử khác, H3O+

H có vị trí đặc biệt trong bảng hệ thống tuần hoàn các nguyên tố hóa học H vừa giống-khác với các kim loại kiềm và halogen H có đặc điểm mà những nguyên tố khác không có (do bản chất của proton và không có e chắn điện tích hạt nhân) như tạo liên kết hidro, cầu hidro và hợp chất không hợp thức với kim loại)

Occurrence and Abundance: Occurrence and Abundance: Elemental Composition of the Sun & the Universe Elemental Composition of the Sun & the Universe

Hydrogen Hydrogen HeliumHelium All Others  All Others

SunSun 92.5 %92.5 % 7.3 %7.3 % 0.2 %0.2 %

Universe Universe   90.87 %   90.87 %     9.08 %     9.08 %     0.05 %     0.05 %

Elemental Composition of the Earth’s Crust (ppm mass) Elemental Composition of the Earth’s Crust (ppm mass) Mg  ­  27 640 O  ­  455 000  Mg  ­  27 640 O  ­  455 000   Na  ­  22 700 Si  ­  272 000  Na  ­  22 700 Si  ­  272 000    K  ­  18 400 Al  ­    83 000    K  ­  18 400 Al  ­    83 000  Ti   ­     6320 Fe  ­    62 000  Ti   ­     6320 Fe  ­    62 000 H  ­     1520       H  ­     1520 Ca  ­   46 600  Ca  ­   46 600

Elemental Composition of the Human Body: Elemental Composition of the Human Body:

By Atoms By Atoms H  ­     63.0 % H  ­     63.0 % O  ­     25.5 % O  ­     25.5 % C  ­       9.5 % C  ­       9.5 % N  ­       1.4 % N  ­       1.4 %

By Mass By Mass

10.0 %10.0 % 64.6 %64.6 % 18.0 %18.0 %   3.1 %  3.1 %

Hydrogen also occurs in very large  Hydrogen also occurs in very large  quantities in the ocean and is present in  quantities in the ocean and is present in  more compounds than any other element. more compounds than any other element.

HXHX

HH22OO

O2

­C­C­ ­C­C­

C

=

C

X2

N2

M

MHMHxx

NHNH33

HH22

MxOy

C=C

­C­C­ ­C­C­

M + HM + H22OO

O = C

­C­OH ­C­OH

Noted  a  flammable  gas  1671    ­    Robert  Boyle  ­  Noted  a  flammable  gas  1671    ­    Robert  Boyle  ­  formed when iron was reacted with sulfuric acid. formed when iron was reacted with sulfuric acid. Reacted acids with Fe,  1766  ­  Henry Cavendish ­  Reacted acids with Fe,  1766  ­  Henry Cavendish ­  Zn,  and  Sn  and,  thus,  established  the  true  Zn,  and  Sn  and,  thus,  established  the  true  properties of the element. properties of the element. Showed  quantitatively  1781    ­    Henry  Cavendish  ­  Showed  quantitatively  1781    ­    Henry  Cavendish  ­  that water was formed when hydrogen was burned  that water was formed when hydrogen was burned   an  with  oxygen,  proving  that  water  was  NOTNOT  an  with  oxygen,  proving  that  water  was  element. element. Proposed  the  name  1783    ­    Antoine  Lavoisier  ­  Proposed  the  name  1783    ­    Antoine  Lavoisier  ­  “hydrogen” from the Greek for “water former”. “hydrogen” from the Greek for “water former”.

Main article: Isotopes of hydrogen

iso

NA

half­life

DM

DE (MeV)

DP

99.985%

H is stable with 0 neutrons

1H

0.0115%

H is stable with 1 neutrons

2H

3He

β−

3H

trace

12.32 y

0.019

Historical information

Discovered by:

Henry Cavendish (1731-1810)

Discovered at:

London, England

Discovered when:

1766

Origin of name:

From the Greek words "hydro" and "genes" meaning "water" and "generator"

Department of Inorganic Chemistry - HUT

Molecular Properties of Hydrogen: Molecular Properties of Hydrogen: Over 40 Forms of Hydrogen Exist ­ Over 40 Forms of Hydrogen Exist ­

++,   H,   H33

H,   HH,   H22   H   H++,   H,   H­­,   H,   H22 ,   D,   D22,   D,   D++,   D,   D­­,, ++,   D,   D

,  nuclear spin isomers,  etc. HD,   HT,   DT,   T,   T22,  nuclear spin isomers,  etc. HD,   HT,   DT,   T,   T

Isotopes of Hydrogen ­  Isotopes of Hydrogen ­

11HH

A.  Protium  ­ A.  Protium  ­ 1 P1 P++ (99.986 %) (99.986 %)

22HH

(0.014 %) (0.014 %) euterium  ­ B.  B.  DDeuterium  ­ +  1 n00 1 P1 P++  +  1 n

33HH

(7 x 10­16­16 %)  %) (7 x 10 ritium  ­ C.  C.  TTritium  ­ +  2 n00 1 P1 P++  +  2 n

Physical Properties: Physical Properties:

HH22

D      D22

TT22

(cid:0) 2.0141     3.0160    2.0141     3.0160    ­254.3      ­252.4    ­254.3      ­252.4    ­249.3      ­248.0    ­249.3      ­248.0      74.14     (74.14)      74.14     (74.14)      443.4       446.9      443.4       446.9

(cid:0) 0.197      0.250       0.197      0.250 0.117          0.117 , kJ/mol Fusion, kJ/mol

(cid:0) 1.226      1.393       1.226      1.393 , kJ/mol         0.904 Vaporization, kJ/mol         0.904

1.0078 Atomic Mass, u        1.0078 Atomic Mass, u Freezing Point, ooCC        ­259.0        ­259.0 Freezing Point,  Boiling Point, ooCC        ­252.6        ­252.6 Boiling Point,          74.14 Bond Length, pm         74.14 Bond Length, pm (cid:0) HHDissociation , kJ/mol         435.9 Dissociation, kJ/mol         435.9 (cid:0) HHFusion (cid:0) HHVaporization Vapor Pressure, torr        54                 5.8           ­ Vapor Pressure, torr        54                 5.8           ­

Physical properties

Hidro Phase

gas

(0 °C, 101.325 kPa)

Density

0.08988 g/L

14.01 K

Melting point

(−259.14 °C, −434.45 °F )

20.28 K

Boiling point

(−252.87 °C, −423.17°F )

Triple point

13.8033 K, 7.042 kPa

Critical point

32.97 K, 1.293 MPa

Heat of fusion

(H2) 0.117 kJ∙mol−1

Heat of vaporization

(H2) 0.904 kJ∙mol−1

(25 °C) (H2)

Heat capacity

28.836 J∙mol−1∙K−1

Department of Inorganic Chemistry - HUT

Electronic Structure and Modes of Reaction: Electronic Structure and Modes of Reaction:

Hydrogen has the simplest electronic structure of all Hydrogen has the simplest electronic structure of all elements. It consists of a nucleus containing one proton elements. It consists of a nucleus containing one proton and one electron in the 1s orbital. and one electron in the 1s orbital.

1s1 electron

+

Protons are extremely small Protons are extremely small and, therefore, are VERYVERY   and, therefore, are  polarizing because they have a polarizing because they have a charge density.. very large charge density very large  They associate strongly with They associate strongly with molecules around them.  Thus, molecules around them.  Thus, in water or in acids they form in water or in acids they form hydronium ion, H33OO++.. the hydronium ion, H the

Modes of Reactivity: Modes of Reactivity: 1.   By losing an electron to form a hydrogen ion, H++.. 1.   By losing an electron to form a hydrogen ion, H

­

Hydride ions, H H ­­, exist in the ionic , exist in the ionic Hydride ions,  crystalline solids of some of the Groups 1 crystalline solids of some of the Groups 1 elec­ and 2 metal hydrides.  Only the most elec­ and 2 metal hydrides.  Only the most   metals will react to form ionic tropositive metals will react to form ionic tropositive ) hydrides. saline) hydrides. ((saline

2.   By gaining an electron to form a hydride ion, H ­­.. 2.   By gaining an electron to form a hydride ion, H

3.   By forming an electron pair (covalent) bond with 3.   By forming an electron pair (covalent) bond with

H •

.. • Cl : ..

..      • Cl :

H •

..

.... H : Cl : H : Cl :

....

Non­metals and some Non­metals and some metals form covalent metals form covalent hydrides. hydrides.

another atom. another atom.

Trạng thái thiên nhiên và phương pháp điều chế

Laboratory routes to H2 In the laboratory, H2 is usually prepared by the reaction of acids on metals such as zinc.

Zn + 2 H+ → Zn2+ + H2

Aluminum produces H2 upon treatment with acids but also with base:

2 Al + 6 H2O → 2 Al(OH)3 + 3 H2

The electrolysis of water is a simple but expensive method of producing hydrogen. Typically the cathode electrode is made from platinum.

Department of Inorganic Chemistry - HUT

Tính bền nhiệt

Tính chất hóa học

Tính khử

Tính oxy hóa

K

2000

432

kJ mol /

= oH 298

H

2

H k 2 ( )

H2 với vỏ e của He nên rất bền nhiệt, khó phân hủy thành H

Ở p = 1 atm và 2000 K, H2 phân hủy 0.1 %.

Ở 5000 K phân hủy đạt 95 %

Quá trình phân hủy phải thu nhiều nhiệt.

D (cid:0) (cid:0) (cid:0) (cid:0)

 Ở nhiệt độ thường hidro kém hoạt động về mặt hóa học. Department of Inorganic Chemistry - HUT

Tính khử H – e = H+ ΔHo = 1312 kJ/mol

+

=

2

H k ( ) 2

F k ( ) 2

HF k ( ) Phản ứng xảy ra ở nhiệt độ thường, không cần xúc tác.

Hỗn hợp cùng thể tích hidro và flo nổ ngay ở nhiệt độ thấp

o C

550

+ H k O k ( )

2

2

2

H O k ( ) 2

( ) 2 = - o

(cid:0) (cid:0) (cid:0) (cid:0)

H

241

kJ mol /

Hỗn hợp này không phản ứng ở nhiệt độ thấp nhưng lại nổ khi có ngọn lửa.

Khí hidro cháy êm dịu trong oxi tinh khiết  phản ứng tỏa ra nhiều nhiệt, ngọn lửa

đạt 2500 oC  ứng dụng làm đèn xì hidro-oxy để cắt kim loại, nấu chảy thạch anh,

Pt, điều chế rubi nhân tạo từ oxit nhôm.

Phản ứng có thể xảy ra khi dùng xúc tác là sợi amiang có chứa muội Pt.

Ứng dụng làm pin nhiên liệu

D

+

-

OH

O l

e

2

-

=

+

e

(dd)

H O l 2

(dd)=4H ( ) 4 2 + OH ( ) 4 4 =

+ H k ( ) 4 2 + O k ( ) 2 2 + H k O k ( )

( )

2

H O l ( ) 2

2

2

-

- +

Ở nhiệt độ cao, hidro có thể chiếm oxi của nhiều hợp chất, đa số là oxit kim loại

+

=

CuO r H k ( )

( )

( )

2 + ( ) 4

2 + H k ( ) 4 2

Fe O r 3

4

+ Cu r H O k ( ) = H O k Fe r ( ) 3 ( ) 2

Phản ứng 1 có thể dùng để định lượng hidro.

Phản ứng khử được dùng để điều chế một số kim loại như Ni, Fe, W.

Khi có Pt làm xúc tác, hidro có thể khử nhiều hợp chất hữu cơ tan trong các dung

môi hữu cơ như: khử hợp chất không no thành hợp chất no, khử andehit thành

rượu.

Ở áp suất cao, hidro có thể đẩy một số kim loại ra khỏi dung dịch muối của chúng.

H2

CuO

H2

HCl

Zn

Department of Inorganic Chemistry - HUT

+

=

+

H

2

Zn H SO loang +

2

( +

ZnSO 4 + +

2 +

) = H Mn

4 H

3

5

4

_ MnO 4

H O 2

- + OH-  NH3

Hidro mới sinh là hidro nguyên tử hoạt tính hóa học mạnh hơn phân tử: -Trong phản ứng hóa học, H2 cần phân hủy thành nguyên tử  tiêu thụ nhiều nhiệt. -H phản ứng với các chất tỏa ra nhiều nhiệt. -Phản ứng phát ra < 436 kJ/mol H2 sẽ không tự xảy ra. Ứng dụng làm đèn xì nguyên tử H để hàn cắt kim loại. H + SO2 + H+  H2S -, NO3 H + NO2 Các phản ứng trên không xảy ra với hidro nguyên tử. Hidro mới sinh

Department of Inorganic Chemistry - HUT

+   CO (g)  (g)   +   CO (g) Synthesis and Production of Hydrogen: Synthesis and Production of Hydrogen: Commercial Production ­  Commercial Production ­  1.   “Water Gas” Reaction 1.   “Water Gas” Reaction C (s)    +   H22O (g)O (g) C (s)    +   H HH22 (g)

HH22 (g)  +  CO (g)  +  O

(g)  (g)  +  CO (g)  +  O22 (g)

CO    CO22 (g)  +  H

This is an inexpensive process that produces “water This is an inexpensive process that produces “water gas which is an important industrial fuel source. gas which is an important industrial fuel source.

+ thermal thermal  (g)  +  H22O (g)O (g) +  energy        energy

HH22O (g)O (g)

is difficult to purify from the water gas mixture. HH22 is difficult to purify from the water gas mixture. However, it can be done using the following reaction: However, it can be done using the following reaction:

(g)  +  CO (g) HH22 (g)  +  CO (g)

450450ooCC FeFe22OO33

(g)  +  CO 2 2 HH22 (g) (g)   +  CO22 (g)

HH22 (g)  +  CO (g)  +  CO22 (g)  +  K (g)  +  K22COCO3 3 (aq)  +  H (aq)  +  H22O (l)O (l)

2 KHCO33 (aq)  +   2 KHCO (g)  (aq)  +  HH22 (g)

2.   Steam­Hydrocarbon Reforming 2.   Steam­Hydrocarbon Reforming

A.  Natural gas or oil refinery feedstock desulfur­ A.  Natural gas or oil refinery feedstock desulfur­

ization ization

S (g)  +  2 NaOH (aq) HH22S (g)  +  2 NaOH (aq) Na22S (aq)  +  H      Na S (aq)  +  H22O (l)O (l)

B.  Reforming B.  Reforming

760 ­ 760 ­ 980980ooCC 600 psi 600 psi Ni Cat. Ni Cat.

Endothermic Endothermic

CHCH44 (g)  +  H (g)  +  H22O (g)O (g) (g) CO (g)  +  3 HH22 (g) CO (g)  +  3

Two reversible reactions occur setting up an equilibrium Two reversible reactions occur setting up an equilibrium , and H22O:O: mixture of H2, 2, CO, CO mixture of H CO, CO22, and H

CO (g)  +  H22O (g)O (g) CO (g)  +  H COCO22 (g)  + (g)  (g)  +  HH22 (g)

(g) CO (g)  +  3 H22 (g) CO (g)  +  3 H CHCH44 (g)  +  H (g)  +  H22O (g)O (g)

350350ooCC

C.   High Temperature Shift Reaction C.   High Temperature Shift Reaction

CO (g)  +   H22O (g)O (g)      CO (g)  +   H CO  CO22 (g)  +

Fe/Cu Fe/Cu Cat.Cat.

(g)  (g)  +  HH22 (g) Exothermic Exothermic

200200ooCC

D.   Low Temperature Shift Reaction D.   Low Temperature Shift Reaction

CO (g)  +   H22O (g)O (g)      CO (g)  +   H CO  CO22 (g)  +

(g)  (g)  +  HH22 (g) Exothermic Exothermic

This reduces CO content to about 0.2 % by volume. This reduces CO content to about 0.2 % by volume.

350350ooCC

E.   Methanation (For further removal of CO)   E.   Methanation  (For further removal of CO)

(g) CO (g)  +   H22 (g) CO (g)  +   H CH  CH44 (g)  +  H (g)  +  H22O (g)O (g)

Removal F.   CO22 Removal F.   CO 2 HOCH22CHCH22NHNH2 2  + CO   2 HOCH

+ CO22  +  H  +  H22OO                    (HOCH (HOCH22CHCH22NHNH3 3 ))22COCO33

KK22COCO33 (aq) (aq)   + CO + CO22 (g)  +  H (g)  +  H22O (l)O (l) (aq) 2 KHCO33 (aq) 2 KHCO

Low temperature shift and methanation can both be Low temperature shift and methanation can both be replaced by this method which involves passing gas from replaced by this method which involves passing gas from high temperature shift reactor through molecular sieves to high temperature shift reactor through molecular sieves to produce hydrogen with(cid:0)(cid:0) produce hydrogen with

99.9 % purity.  99.9 % purity.

G.  Pressure­Swing Absorption (PSA) G.  Pressure­Swing Absorption (PSA)

The hydrocarbon­steam reforming process can also be The hydrocarbon­steam reforming process can also be done using the products of the “cracking” process in oil done using the products of the “cracking” process in oil refineries, e.g.,     CC33HH88 (g)  +  H refineries, e.g., (g)  +  H22O (g)O (g)

Anode: Anode:

2 OH2 OH­­

HH22O  +  1/2 O

+ 2 e­­ O  +  1/2 O22  + 2 e

Cathode: Cathode:

2 OH2 OH­­  +

O  +  2 e­­ 2 H2 H22O  +  2 e

+  H H22

3.   Electrolysis of NaOH (aq) or KOH (aq) 3.   Electrolysis of NaOH (aq) or KOH (aq)

Ni anodes and Fe cathodes are used in this process.  This Ni anodes and Fe cathodes are used in this process.  This process is the most expensive method for producing H22.. process is the most expensive method for producing H

2 H2 H22OO 2 2 HH22  +  O  +  O22

A By­product of the production 4.   Electrolysis of Brine ­ A By­product of the production 4.   Electrolysis of Brine ­

+ NaOH (aq)  (g)  + NaOH (aq)

2 NaCl (aq)  +  2 H22O (l)O (l) 2 NaCl (aq)  +  2 H

Cl22 (g)  +       Cl

(g)  +  HH22 (g)

of chlorine in the chlor­alkali industry. of chlorine in the chlor­alkali industry.

Laboratory Synthesis ­ Laboratory Synthesis ­

Insufficient Hydrogen is found in the atmosphere.  There­ Insufficient Hydrogen is found in the atmosphere.  There­ fore, it must be produced from compounds containing it. fore, it must be produced from compounds containing it.

1.   Water as a Source for Hydrogen ­ 1.   Water as a Source for Hydrogen ­ A.  At ordinary temperatures A.  At ordinary temperatures

1)  By highly electropositive metals 1)  By highly electropositive metals

2 Na (s)  +  2 H22O (l)O (l) 2 Na (s)  +  2 H (g) NaOH (aq)  +  HH22 (g) NaOH (aq)  +

Ca (s)  +  2 H22O (l)O (l) Ca (s)  +  2 H Ca(OH)22 (s)  +   Ca(OH) (g)  (s)  +  HH22 (g)

2)  By hydrides of electropositive metals 2)  By hydrides of electropositive metals

LiH (s)  +  H22O (l)O (l) LiH (s)  +  H (g) LiOH (aq)  +  HH22 (g) LiOH (aq)  +

CaHCaH22 (s)  +  2 H (s)  +  2 H22O (l)O (l) Ca(OH)22 (s)  + 2  Ca(OH) (g)  (s)  + 2 HH22 (g)

3)  By electrolysis of acidified solution 3)  By electrolysis of acidified solution

2 H2 H22O (l)O (l) 2 2 HH22 (g) (g)  (g)  +  O  +  O22 (g)

B.  At higher temperatures B.  At higher temperatures Mg (s)  +  H22O (g)O (g) Mg (s)  +  H (g) MgO (s)  +  HH22 (g) MgO (s)  +

Zn (s)  +  H22O (g)O (g) Zn (s)  +  H (g) ZnO (s)  +  HH22 (g) ZnO (s)  +

All of these are Exothermic All of these are Exothermic

3 Fe (s)  +  4 H22O (g)O (g) 3 Fe (s)  +  4 H FeFe33OO44 (s)  + (g)  (s)  +  HH22 (g)

CO (g)  +  H22O (g)O (g) CO (g)  +  H COCO22 (g)  + (g)  (g)  +  HH22 (g)

+   CO (g)  (g)   +   CO (g) C (s)    +   H22O (g)O (g) C (s)    +   H HH22 (g)

2.   Non­Oxidizing Acids as a Source for Hydrogen ­ 2.   Non­Oxidizing Acids as a Source for Hydrogen ­

(aq) Zn (s)  +  dil. H22SOSO44 (aq) Zn (s)  +  dil. H ZnSOZnSO44 (aq)  + (g)  (aq)  +  HH22 (g)

Zn (s)  +  2 HCl (aq) Zn (s)  +  2 HCl (aq) ZnCl22 (aq)  +    ZnCl (g)  (aq)  +  HH22 (g)

Mg (s)  +  2 HCl (aq) Mg (s)  +  2 HCl (aq) MgCl22 (aq)  +    MgCl (g)    (aq)  +  HH22 (g)

Oxidizing acids DON’T WORK!! Oxidizing acids DON’T WORK!!

(aq) Zn (s)  +  HNO3 3 (aq) Zn (s)  +  HNO

(aq)  +  NO22    Zn(NO33))22 (aq)  +  NO    Zn(NO                   +  H+  H22O (l)O (l)

Assignment: Balance this equation! Assignment: Balance this equation!

Zn (s)  +  2 NaOH (aq)  +  2 H22O (l)O (l) Zn (s)  +  2 NaOH (aq)  +  2 H

Al (s)  +  2 KOH (aq)  +  2 H22O (l)O (l) Al (s)  +  2 KOH (aq)  +  2 H

NaNa22[Zn(OH) [Zn(OH)44]]  (g)       ++ HH22 (g)        [Al(OH)44]] KK22[Al(OH)  (g)       ++ HH22 (g)

3.   Bases as a Source for Hydrogen ­ 3.   Bases as a Source for Hydrogen ­

Biological routes to H2

H2 is produced by several microorganisms, usually via

reactions catalyzed by enzymes called hydrogenases.

These iron and sometimes nickel-containing catalysts

transfer

reducing

equivalents

produced

during

fermentation to water. Some of these organisms will

split water, via operation of O2- and H2-generating cycles

which operate in the light and in the dark respectively.

Other rarer but mechanistically interesting routes to H2

production also exist in nature. Nitrogenase produces

approximately one equivalent of H2 for each equivalent of

N2 reduced to ammonia. Some phosphatases reduced

phosphite to H2.

Department of Inorganic Chemistry - HUT

Hidrua của các nguyên tố: là hợp chất của hidro với các nguyên tố

Hidrua cộng hóa trị Hidrua cộng hóa trị

Hidrua kiểu kim loại Hidrua kiểu kim loại

Hidrua ion Hidrua ion

Department of Inorganic Chemistry - HUT

Hidrua ion: - Là những tinh thể không màu, giống với muối  gọi là hidrua muối. Hidro có ái

lực với e rất bé  xu hướng tạo ion âm rất yếu so với halogen. - Do tính thu nhiệt của ion H-  chỉ những kim loại hoạt động mạnh như kim loại

kiềm và kiềm thổ mới tạo được hidrua ion. Bản chất ion được thể hiện rõ ở tính

nóng chảy ở nhiệt độ cao và dẫn điện khi nóng chảy. - Chế tạo bằng cách đun nóng kim loại trong khí quyển hidro.

o

= o

H

= H

kJ mol /

kJ mol /

218 =

113 =

H k ( )

Br k ( )

H k ( ) 2

Br k ( ) 2

1 2

1 2

o

=- o

D D

H

=- H

kJ mol /

kJ mol /

+

66 =

+

326 =

e

e

H k ( )

H k ( )

Br k ( )

Br k ( )

o

= o

D D - -

H

=- H

kJ mol /

kJ mol /

+

152 =

+

213 =

e

e

H k ( )

Br k ( )

H k ( ) 2

Br k ( ) 2

1 2

1 2

o

t =

+ Na H

NaH

2

2

2

o

D D - -

Hidrua ion Hidrua ion

+

t =

Ca H CaH 2

2

Department of Inorganic Chemistry - HUT

Hidrua ion: -Về mặt hóa học, hidrua ion có hoạt tính rất cao  phản ứng nhanh và hoàn toàn

với những chất có thể cho dù chỉ là những vết ion H+ để giải phóng khí hidro. - Làm chất khử trong tổng hợp hữu cơ, LiH, NaH. - Coi hidrua ion là muối của axit hết sức yếu là H-H.

e

- =-

V

2.25

o H H /2

+

H

H

e 2

2

-

=

2

+

+

= NaH H O NaOH H

=

2 +

+

2 H O Ca OH

CaH

H

(

)

2

2

2

2

2

2

Dùng CaH2 để điều chế nhanh hidro trong quân sự, để định lượng nước trong các hợp chất hữu cơ

Department of Inorganic Chemistry - HUT

Hidrua cộng hóa trị Hidrua cộng hóa trị

-Là hidrua của các phi kim và một số kim loại lưỡng tính.

-Hóa học của hidrua cộng hóa trị phụ thuộc mạnh vào bản chất nguyên tố liên kết

với H.

-Liên kết H-X trong một nhóm hơi giảm khi đi từ trên xuống; trong một chu kỳ nói

chung tăng khi đi từ trái sang phải. Nguyên nhân phụ thuộc vào độ âm điện và

kích thước nguyên tử của nguyên tố X.

-Có nhiệt độ nóng chảy và nhiệt độ sôi thấp do Uvdv không cao. HF, H2O, NH3 có

nhiệt độ nóng chảy và sôi cao bất thường là do có thêm liên kết hidro.

-Độ hòa tan trong nước phụ thuộc vào độ phân cực phân tử, kích thước phân tử

và sự có mặt của liên kết hidro. HF tan trong nước theo bất kỳ tỷ lệ nào. HCl,

HBr, HI, NH3 tan nhiều trong nước; các hidrua cộng hóa trị còn lại thì ít tan hoặc

không tan trong nước.

-Một số hidrua có tính axit như HX, H2X; một số có tính bazơ như XH3.

Department of Inorganic Chemistry - HUT

Hidrua kiểu kim loại Hidrua kiểu kim loại

-Nhiều kim loại chuyển tiếp hấp thụ hidro tạo thành chất rắn có thành phần

xác định như UH3, VH, ScH2, hoặc không xác định như PdHx.

-So với kim loại ban đầu, hidrua kim loại có khả năng phản ứng kém hơn

với oxi và nước, dòn hơn, là chất dẫn điện hoặc bán dẫn, bề ngoài giống

kim loại.

-Đã có nhiều nghiên cứu về hidrua kim loại nhưng do cấu tạo phức tạp nên

chưa hiểu hết về loại hợp chất này.

-Có tính chất từ lý thú.

-Khi hấp thụ và giải phóng hidro gây biến đổi thể tích  có một số ứng

dụng tạo kim loại bột.

Department of Inorganic Chemistry - HUT

CHƯƠNG II HYDRO VÀ NƯỚC

Nước

Tính chất lý học

Tính chất hóa học

Trạng thái thiên nhiên và phương pháp tinh chế

Sự gây ô nhiễm môi trường nước

Xử lý nước thải

Hidro peoxit

There are more water molecules in a single droplet of water than there are grains of sand on Wrightsville Beach

You are 65% water

Department of Inorganic Chemistry - HUT

H2O molecule

sp3 O-H = 0.9584 Å μ = 1.84 D Bắt đầu phân hủy 1000 oC Phân hủy 2 % ở 2000 oC

s s p 2 s

2 z

p = 2 x

2 y

Hydrogen bonding

• Polarity means small negative charge at O end

• Small positive charge at

H end

• Attraction between + and – ends of water molecules to each other or other ions

• Molecules ‘order’

themselves with these relatively weak H-bonds

Hydrogen bonding

• Hydrogen bonds are weaker than covalent bonds but still strong enough to result in

–Solid, liquid, gas at Earth’s surface –Unusual thermal properties –Unusual density

Hydrogen bonding

• Hydrogen bonds are weaker than covalent bonds but still strong enough to result in – High surface tension (water

beads)

– High solubility of chemical

compounds in water

• Water is especially good

at dissolving ionic compounds (salts)

• This is why the ocean is

‘salty’

Hydrogen-Bonding and the Unusual Properties of Water

)

L

R

=

=

<

0

D -

dT dP

VT nc H

V V T ( nc H

nc

nc

Maximum Density 40C

Density of Water

•Ice is less dense than water

11.3

D D

Density of water

• Density of water increases as temperature decreases to 4oC

• Density of ice is less than density of

water

• From 4oC to 0oC density of water

decreases as temperature decreases

Density of water, the reason why ice floats

Effect of Hydrogen-Bonding on Boiling Point

Phase Diagram of Water

Changes of state due to adding or subtracting heat • Heat is energy of moving molecules • Calorie is amount of heat needed to

raise the temperature of 1 gram of water by 1o C

• Temperature is measurement of average

kinetic energy

So which has more energy?  A swimming pool full of barely warm water, or a teaspoon of boiling hot water?

Unusual thermal properties of H2O

• H2O has high boiling point

• H2O has high freezing point

– If water did not have hydrogen bonds, ice

would melt at -90ºC and water would

boil at -68ºC

• Most H2O is in the form of water (liquid)

on Earth’s surface (good for life)

Unusual thermal properties of H2O • High latent (hidden) heats of – Vaporization/condensation – Melting/freezing – Evaporation

• Latent heat is energy that goes into phase

change, not temperature change

Unusual thermal properties of H2O

• Water high heat capacity

– Amount of heat required to raise the

temperature of 1 gram of any substance 1o C

– Water can take in/lose lots of heat without

changing temperature – Rocks low heat capacity

• Rocks quickly change temperature as they

gain/lose heat

That’s why beach­sand is cold on an August night That’s why beach­sand is cold on an August night but the water is still warm       but the water is still warm

Unique Properties of Water

• Water has unusually high specific heats. – ice: 2.03 J/g.oC or 36.6 J/mol.oC – liquid: 4.186 J/g.oC or 75.4 J/mol.oC – steam: 1.99 J/g.oC or 35.9 J/mol.oC • Water has unusually high latent heats. 333 J/g or 6.01 kJ/mol 2.44 kJ/g or 44.0 kJ/mol

– fusion: – vaporization:

Pure water vs. seawater

Department of Inorganic Chemistry - HUT

Hydrologic cycle describes recycling of water near Earth’s surface

Residence time and steady state

Water molecules in different states of matter

What are the condensation and vaporization points  for pure water?

What are the freezing and  melting points for pure water

Desalination processes

• Remove salt from seawater • Distillation--most common process • Electrolysis – (not just for hair removal!) • Reverse osmosis (you’ve all drank ‘RO’ water

before)

• Freeze separation (like sea-ice)

Reverse Osmosis Water (‘RO’ water)

Commercial water Supply plants

Dasani, Aquafina is RO water with some  salts added back in (for flavor)

pH of Water

pH is a measure of the H+ concentration in water pH = -log[H+]

dissociation of water

H2O (cid:0) H+ + OH-

[H+] = 10-7 M

for pure water, pH = 7.0 but other solutes may add or remove H+ ions

in acidic solutions, pH = 0-7

in basic solutions, pH = 7-14

Nước vừa có tính oxi hóa (do hidro có số oxi hóa +1)

vừa có tính khử (do oxi có số oxi hóa -2)

Ở điều kiện thường, các tính chất này thể hiện yếu nên:

 chỉ các chất khử mạnh như kim loại kiềm, kiềm thổ

 chỉ các chất oxi hóa mạnh như F

mới dễ dàng phản ứng với nước.

+

+

(cid:0) (cid:0) (cid:0)

HOH

NaOH H

2

2

2

2

Na +

(cid:0) (cid:0) (cid:0)

2

2

4

F 2

H O 2

+ HF O 2

Department of Inorganic Chemistry - HUT

Về mặt nhiệt động, khả năng xảy ra phản ứng oxi hóa - khử như sau:

2

+

+

o

+

= e

e

+

H

e

2

2

lg

H k ( ) 2

+ H H /

+ H H /

2

2

� �� � H p

0.059 2

H

2

+

o

e

+

= e

lg

+ ( ) 4

+ e H 4

2

(

O k 2

H O l ( ) 2

O H O /

O H O /

p H O 2

2

2

2

2

) 4 +� � � �

0.059 4

Nước bị OXH

=

=

p

atm 1

H

2

p O 2

e

=

V

0.817

O H O /

2

2

=

7

Không bị OXH - KH Không bị OXH - KH

pH e o

=

V

0.00

+ H H /

2

e

= -

V

0.413

+ H H /

2

o

e

=

V

1.23

O H O /

2

2

Nước bị KH

Department of Inorganic Chemistry - HUT

Oxidant

Oxidation Potential, V

Fluorine

3.0

Hydroxyl radical

2.8

Ozone

2.1

Hydrogen peroxide

1.8

Potassium permanganate

1.7

Chlorine dioxide

1.5

Chlorine

1.4

Department of Inorganic Chemistry - HUT

Chemical properties

It usually acts as an oxidizing agent, but there are many

reactions where it acts as a reducing agent, releasing

oxygen as a by-product.

It also readily

forms both

inorganic and organic

peroxides.

98.74

+

D

Z

2

2

=- o = o

(cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0)

H O 2 2

H O O 2

2

H G

kJ mol / ­119.2 kJ/mol

D

Department of Inorganic Chemistry - HUT

The rate of decomposition is dependent on the temperature and concentration of the peroxide, as well as the pH and the presence of impurities and stabilizers.

Hydrogen peroxide is incompatible with many substances that catalyse its decomposition, including most of the transition metals and their compounds. Common catalysts include manganese dioxide, potassium permanganate, and silver. The same reaction is catalysed by the enzyme catalase, found in the liver, whose main function in the body is the removal of toxic byproducts of metabolism and the reduction of oxidative stress. The decomposition occurs more rapidly in alkali, so acid is often added as a stabilizer.

Spilling high concentration peroxide on a flammable substance can cause an immediate fire fueled by the oxygen released by the decomposing hydrogen peroxide. High- strength peroxide (also called high-test peroxide, or HTP) must be stored in a vented container to prevent the buildup of oxygen gas, which would otherwise lead to the eventual rupture of the container. Any container must be made of a compatible material such as PTFE, polyethylene, stainless steel or aluminium and undergo a cleaning process (passivation) to remove all contamination prior to the introduction of peroxide. (Note that while compatible at room temperature, polyethylene can explode with peroxide in a fire.)

In the presence of certain catalysts, such as Fe2+ or Ti3+, the decomposition may take a different path, with free radicals such as HO· (hydroxyl) and HOO· being formed. A combination of H2O2 and Fe2+ is known as Fenton's reagent.

Redox reactions Redox reactions In aqueous solution, hydrogen peroxide can oxidize or reduce a variety of inorganic ions. When it acts as a reducing agent, oxygen gas is also produced. In acid solution Fe2+ is oxidized to Fe3+,

2 Fe2+(aq) + H2O2 + 2 H+(aq) → 2 Fe3+(aq) + 2H2O(l)

and sulfite (SO32−) is oxidized to sulfate (SO42−). However, potassium permanganate is reduced to Mn2+ by acidic H2O2. Under alkaline conditions, however, some of these reactions reverse; Mn2+ is oxidized to Mn4+ (as MnO2), yet Fe3+ is reduced to Fe2+.

2 Fe3+ + H2O2 + 2 OH− → 2 Fe2+ + 2 H2O + O2

Hydrogen peroxide is frequently used as an oxidising agent in organic chemistry. One application is for the oxidation of thioethers to sulfoxides.[citation needed] For example, methyl phenyl sulfide was oxidised to methyl phenyl sulfoxide in 99% yield in methanol in 18 hours (or 20 minutes using a TiCl3 catalyst):

Ph-S-CH3 + H2O2 → Ph-S(O)-CH3 + H2O

Alkaline hydrogen peroxide is used for epoxidation of electron-deficient alkenes such as acrylic acids, and also for oxidation of alkylboranes to alcohols, the second step of hydroboration-oxidation.

Department of Inorganic Chemistry - HUT

Formation of peroxide compounds Formation of peroxide compounds

Hydrogen peroxide is a weak acid, and it can form hydroperoxide or peroxide salts or derivatives of many metals. For example, with aqueous solutions of chromic acid (CrO3), it can form an unstable blue peroxide CrO(O2)2. It can also produce peroxoanions by reaction with anions; for example, reaction with borax leads to sodium perborate, a bleach used in laundry detergents: Na2B4O7 + 4 H2O2 + 2 NaOH → 2 Na2B2O4(OH)4 + H2O

H2O2 converts carboxylic acids (RCOOH) into peroxy acids (RCOOOH), which are themselves used as oxidizing agents. Hydrogen peroxide reacts with acetone to form acetone peroxide, and it interacts with ozone to form hydrogen trioxide. Reaction with urea produces carbamide peroxide, used for whitening teeth. An acid-base adduct with triphenylphosphine oxide is a useful "carrier" for H2O2 in some reactions. Hydrogen peroxide reacts with ozone to form trioxidane. [edit]

Alkalinity Alkalinity

Hydrogen peroxide is a much weaker base than water, but it can still form adducts with very strong acids. The superacid HF/SbF5 forms unstable compounds containing the [H3O2]+ ion.

Department of Inorganic Chemistry - HUT

Manufacture Hydrogen peroxide is manufactured today almost exclusively by the autoxidation of 2-ethyl-9,10- dihydroxyanthracene to 2-ethylanthraquinone and hydrogen peroxide using oxygen from the air. The anthraquinone derivative is then extracted out and reduced back to the dihydroxy compound using hydrogen gas in the presence of a metal catalyst. The overall equation for the process is deceptively simple: H2 + O2 → H2O2 However the economics of the process depend on effective recycling of the quinone and extraction solvents, and of the hydrogenation catalyst. Formerly inorganic processes were used, employing the electrolysis of an aqueous solution of sulfuric acid or acidic ammonium bisulfate (NH4HSO4), followed by hydrolysis of the peroxydisulfate ((SO4)2)2− which is formed. In 1994, world production of H2O2 was around 1.9 million tonnes, most of which was at a concentration of 70% or less. In that year bulk 30% H2O2 sold for around US $0.54 per kg, equivalent to US $1.50 per kg (US $0.68 per lb) on a "100% basis". [edit]

Concentration Hydrogen peroxide works best as a propellant in extremely high concentrations. However, there are very few suppliers of high-purity hydrogen peroxide, and they are averse to selling to any but the largest institutions. As a result, amateurs wishing to use this for rocket fuel usually have to purchase 70% or lower- purity (most of the remaining 30% is water, and sometimes there are traces of stabilizing materials, such as tin), and increase its concentration themselves. Many try distillation, but this is extremely dangerous with hydrogen peroxide; peroxide vapour can detonate at a temperature of about 70 °C (158 °F). A safer approach is sparging, possibly followed by fractional freezing, but, even when using this method, contaminants may still often cause explosions. In the 1950s, high-test peroxide was more readily available, but because of safety concerns bulk manufacturers have since switched over to handling lower concentrations of H2O2 whenever possible. Some amateur groups have expressed interest in manufacturing their own peroxide, for their use and for sale in small quantities to others.

Department of Inorganic Chemistry - HUT