Báo cáo toán học: " The Embedding of Haagerup Lop Spaces"
Chia sẻ: Nguyễn Phương Hà Linh Nguyễn Phương Hà Linh | Ngày: | Loại File: PDF | Số trang:4
lượt xem 3
download
Mục đích của bài viết này là để cho một minh chứng cho một định lý do S. Goldstein: Nếu có một sự phóng chiếu σ-yếu liên tục trung thành định mức một từ một đại số von Neumann M vào von Neumann N subalgebra, sau đó Lp (N) có thể được canonically embeded vào Lp (M).
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo toán học: " The Embedding of Haagerup Lop Spaces"
- Vietnam Journal of Mathematics 34:3 (2006) 353–356 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 The Embedding of Haagerup Lp Spaces Phan Viet Thu Faculty of Math., Mech. and Inform., Hanoi University of Science 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam Received April 18, 2006 Abstract. The aim of this paper is to give a proof for a theorem due to S. Goldstein that: If there is a σ- weakly continuous faithful projection of norm one from a von Neumann algebra M onto its von Neumann subalgebra N , then Lp (N ) can be canon- ically embeded into Lp (M ). Here Lp (A) [6] denotes the Haagerup Lp space over the von Neumann algebra A. 2000 Mathematics Subject Classification: 46L52, 81R15. Keywords: von Neumann algebras, Haagerup spaces, conditional expection for von Neumann algebras. Let M be a von Neumann algebra acting in a Hilbert space H and ψ a normal ψ faithful semifinite weight on M . Let {σt }t∈R denote the modular automorphism group on M associated with ψ. The crossed product M = M σt R is a von Neumann algebra acting on H = L2 (R, H ) generated by ψ (πM (a)ξ )(t) = σ−t (a)ξ (t), ξ ∈ H, t ∈ R. (λM (s)ξ )(t) = ξ (t − s) (1) Theorem. Let N be a von Neumann subalgebra of M . Suppose that ψ|N is ψ |N ψ for each t ∈ R. Then N, the crossed product of N , semifinite and σt |N = σt is canonically embeded into M and for each p ∈ [1, ∞] the space Lp (N ) can be canonically embeded into Lp (M ), so that for any k ∈ Lp (N ) N M k =k p, p N M denote the norms of Lp (N ) and Lp (M ) respectively. where . and . p p
- 354 Phan Viet Thu ψ |N ψ |N ψ ψ Proof. The condition σt |N = σt means that ∀b ∈ N , σt (b) = σt (b) ∈ N , φ i.e. σt leaves N invariant; Together with the condition that ψ|N is semifinite, it implies, by a theorem of Takesaki [5], that there is a σ-weakly continuous projection E of norm one of M onto N such that ψ = (ψ|N ) ◦ E . It is not hard to show that E ◦ σψ = σψ ◦ E (see for example, [4, Proposition 3.2]). Let N = N σψ|N R, it is a von Neumann algebra acting on L2 (R, H ) = H , t generated by operators πN (b), b ∈ N and λN (s), s ∈ R; defined by ψ |N (π(b)ξ (t) = σ−t (b)ξ (t)), (λ(s)ξ (t) = ξ (t − s)) ξ ∈ H, t ∈ R. (2) ψ |N ψ Sine σ−t (b) = (σ−t|N )(b) for b ∈ N ; (1) and (2) imply π M |N = π N , (3) λM = λN , and M, N act on the same Hilbert space H. Let M0 be the * algebra generated algebraically by operators πM (a), a ∈ M and λM (s), s ∈ R. Then M is the σ-weak closure of M0 and any element x0 ∈ M0 can be represented as n λM (sk )πM (ak ) for some {sk }n ⊂ R; {ak}n ⊂ M. x0 = 1 1 k =1 We define N0 in the same way. Thus ∀y0 ∈ N0 , m m λM (sk )(πM |N )(bk ) ∈ M0 y0 = λN (sk )πN (bk ) = k =1 k =1 for some {sk }m ⊂ R; {bk}m ⊂ N . The σ-weak closure of N0 is N. Then we have 1 1 N0 ⊂ M0 and their σ-weak closures verify N ⊂ M. It is clear that ∀x ∈ N ⊂ M; ||x||(N ) = ||x||(M ). Consider now the dual action θs of R in M, characterized by θs (πM (a)) = πM (a), ∀a ∈ M, θs (λM (t)) = e−istλM (t), ∀t, s ∈ R. (4) By (3), we have θs (πN (a)) = πN (a), ∀a ∈ N, θs (λN (t)) = e−istλN (t), ∀t, s ∈ R. Thus θs (y0 ) ∈ N0 for y0 ∈ N0, ∀s ∈ R. So that θs (N0 ) ⊂ N0 ⊂ N. Since θs is σ-weakly continuous on M; for all s ∈ R we have θs (N) ⊂ N. The continuity of θs in measure implies also
- The Embedding of Haagerup Lp Spaces 355 θs (N) ⊂ N and M N θs |N = θs , ∀s ∈ R, M N where θs and θs denote the dual action θs of R on M and on N respectively. By definition of Lp (N ) and Lp (M ) and the above results, it follows that s Lp (N ) = {k ∈ N|∀s ∈ R : θs k = e− p k} N (5) s −p M p = {k ∈ N ⊂ M|∀s ∈ R : θs k =e k } ⊂ L (M ). Then we have Lp (N ) ⊂ Lp (M ). It remains now to show that M N for any k ∈ Lp (N ) ⊂ Lp (M ). k =k p p It suffices to demonstrate it for the case p = 1. Note that L1 (M ) M∗ ; L1 (N ) N∗ and for any φ ∈ N∗ ; φ ◦ E ∈ M∗ . In [1, 2] the author has ˆ ∧ ∧ proved that E can be extended canonically to E : M+ → N+ ; E : M → N 1 1 and E1 : L (M ) → L (N ), given by h(φ) → hφ◦E . It is extended also to Ep : Lp (M ) → Lp (N ); and for any φ ∈ N∗ φ = ( φ ◦ E ) − |N . (N ) Let us calculate the norm of hN = hM E . Note that ||hN ||1 = ||φ||(N ) and φ φ◦ φ (M ) ||hM E ||1 = ||φ ◦ E ||(M ) for any φ ∈ N∗ . We have φ◦ (N ) (M ) φ = sup |φ(b)| ≥ sup |(φ ◦ E )(a)| = φ ◦ E b∈N, b ≤1 a∈M, a ≤1 (N ) ≥ sup |(φ ◦ E )(b)| = sup |φ(b)| = φ . (6) b∈N, b ≤1 b∈N, b ≤1 (N ) (M ) (N ) (M ) ; i.e. hN = hM E This implies φ = φ◦E , which shows that φ 1 φ◦ 1 (N ) (M ) 1 1 for any k ∈ L (N ) ⊂ L (M ), one has k = k . It is now obvious that, 1 1 for each p ∈ [1, ∞], (N ) (M ) ∀k ∈ Lp (N ) ⊂ Lp (M ). k =k , p p References 1. S. Goldstein, Conditional expectations and Stochastic integrals in non commu- tative Lp -spaces, Math. Proc. Camb. Phil. Soc. 110 (1991) 365–383. 2. S. Goldstein, Norm convergence of martingales in Lp -spaces over von Neumann algebras, Revue Roumaine de Math. Pures et Appl. 32 (1987) 531–541. 3. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Alge- bras, Vol. I, 1983; Vol. II, 1986. Academic Press, New York – London. 4. C. E. Lance, Martingale convergence in von Neumann algebras, Math. Proc. Camb. Phil. Soc. 84 (1978) 47–56.
- 356 Phan Viet Thu 5. M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 (1972) 306–321. 6. M. Terp, Lp -spaces Associated with von Neumann Algebras, Notes Kφbenhavns Universitet, Matematisk Institut, N0 . 3, 1981.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo cáo toán học: "The lower tail of the random minimum spanning tree"
4 p | 93 | 12
-
Báo cáo toán học: "The centers of gravity of the associahedron and of the permutahedron are the same"
14 p | 54 | 5
-
Báo cáo toán học: "The cube polynomial and its derivatives: the case of median graphs"
11 p | 57 | 5
-
Báo cáo toán học: "The eigenvalues of the Laplacian for the homology of the Lie algebra corresponding to a poset"
42 p | 53 | 5
-
Báo cáo toán học: "The MacNeille Completion of the Poset of Partial Injective Functions"
30 p | 45 | 5
-
Báo cáo toán học: "The valuations of the near octagon I4"
23 p | 42 | 4
-
Báo cáo toán học: "The Maximum of the Maximum Rectilinear Crossing Numbers of d-regular Graphs of Order n"
16 p | 53 | 4
-
Báo cáo toán học: "The Tur´n Density of the Hypergraph a {abc, ade, bde, cde}"
7 p | 44 | 3
-
Báo cáo toán học: "The valuations of the near polygon Gn"
29 p | 49 | 3
-
Báo cáo toán học: "The number of 0-1-2 increasing trees as two different evaluations of the Tutte polynomial of a complete graph"
5 p | 61 | 3
-
Báo cáo toán học: "The number of elements in the mutation class of a quiver of type Dn Aslak Bakke Buan"
23 p | 45 | 3
-
Báo cáo toán học: "The {4, 5} isogonal sponges on the cubic lattice"
28 p | 32 | 2
-
Báo cáo toán học: "The crossing number of a projective graph is quadratic in the face–width"
8 p | 41 | 2
-
Báo cáo toán học: "The universal embedding of the near polygon Gn"
12 p | 43 | 2
-
Báo cáo toán học: "The spectral radius and the maximum degree of irregular graphs"
10 p | 52 | 2
-
Báo cáo toán học: " The Number of [Old-Time] Basketball Games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Point"
8 p | 49 | 2
-
Báo cáo toán học: "The Problem of the Kings Herbert S. Wilf"
7 p | 49 | 2
-
Báo cáo toán học: "the Prism of the Acyclic Orientati"
6 p | 47 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn