intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi học kì 2 môn Toán lớp 8 năm 2023-2024 có đáp án - Trường PTDTBT THCS Lý Tự Trọng, Bắc Trà My

Chia sẻ: _ _ | Ngày: | Loại File: DOCX | Số trang:15

4
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Cùng tham khảo “Đề thi học kì 2 môn Toán lớp 8 năm 2023-2024 có đáp án - Trường PTDTBT THCS Lý Tự Trọng, Bắc Trà My” giúp các em ôn tập lại các kiến thức đã học, đánh giá năng lực làm bài của mình và chuẩn bị cho kì thi được tốt hơn với số điểm cao như mong muốn. Chúc các em thi tốt!

Chủ đề:
Lưu

Nội dung Text: Đề thi học kì 2 môn Toán lớp 8 năm 2023-2024 có đáp án - Trường PTDTBT THCS Lý Tự Trọng, Bắc Trà My

  1. PHÒNG GD &ĐT BẮC TRÀ MY MA TRẬN ĐỀ KIỂM TRA HỌC KỲ II NĂM HỌC 2023 – 2024 TRƯỜNG PTDTBT THCS Môn: Toán – Lớp 8 – Thời gian: 90 phút (không kể thời gian giao đề) LÝ TỰ TRỌNG TỔ KHTN Mức độ Tổng % điểm Chương/ Đơn vị nhận Nội dung kiến thức – kiến thức đánh giá thức. năng lực NB TH VD VDC TN TL TN TL TN TL TN TL KQ KQ KQ KQ Phân C1 Chương thức đại 0,25 đ VI. số. 25 Phân Tính chất C2 thức đại cơ bản 0,25 đ số. của phân (14 tiết = thức đại 24,45%) số. Phép Bài 1 Bài 4 cộng và 1,0 đ 1,0 đ phép trừ phân thức đại số. Phép nhân và phép chia phân thức đại số. Phương C3, C4 trình bậc C5, C6 Chương nhất một 1,0 đ VII. ẩn. 25 Phương
  2. trình bật Giải bài C7 nhất và toán bằng 0,25 đ hàm số cách lập bậc nhất. phương (14 tiết = trình. 24,45%) Hàm số bậc nhất và đồ thị của hàm số bậc nhất. Hệ số C8 Bài 2 góc của 0,25 đ 1,0 đ đường thẳng. Cách tính Chương xác suất VIII. của biến Mở đầu cố bằng tỉ 15 về tính số. xác suất của biến cố. (8 tiết = 14,5%) Mối liên C9, Bài 3 hệ giữa C10 1,0 đ xác suất 0,5 đ thực nghiệm với xác suất ứng dụng. Chương Hai tam C11 IX. giác đồng 0,25 đ Tam giác dạng. đồng 22,5 dạng.
  3. (13 tiết = 23,6%) Ba Bài trường 5a,b,c hợp đồng 2,0 đ dạng của hai tam giác. Định lý Pythagor e và ứng dụng. Các trường hợp đồng dạng của hai tam giác vuông. Chương Hình C12 X. chóp đều. 0,25 đ Một số Hình Bài 6 12,5 hình chóptứ 1,0 đ khối giác đều. trong thực tế. (6 tiết = 11%) 12TN + 1 3 TL TL + TL 1TL 18 TL Tỉ lệ 40,% 30% 20% 10% 100% phần trăm Tỉ lệ 70% 30% 100% chung
  4. BẢNG MÔ TẢ MỨC ĐỘ ĐÁNH GIÁ MÔN: TOÁN - LỚP: 8 TT Chương/ Nội dung/ Mức độ đánh Số câu hỏi theo mức độ nhận thức Chủ đề Đơn vị kiểm giá thức NB TH V VDC C - Phân thức đại số. Nhận 1 h - Tính chất cơ bản của phân thức đại biết: 1TN ư số. - Phân 1TN ơ - Phép cộng và phép trừ phân thức thức đại n đại số. số. g - Tính 1TL V chất cơ I. bản của 1TL P phân h thức đại â số.
  5. n - Phép th cộng ứ phân c thức đại đ số. ại Hiểu: số - Phép . cộng phân thức đại số. Vận dụng cao: Phân thức đại số. C - Phương trình bậc nhất một ẩn. Nhận 2 h - Giải bài toán bằng cách lập phương biết: 3TN ư trình. - 1TN ơ - Hàm số bậc nhất và đồ thị của hàm Phương n số bậc nhất. trình bậc 1TN g - Hệ số góc của đường thẳng. nhất. V - Giải 1TN 1TL II phương . trình bậc P nhất đơn h giản. ư Nhận ơ biết: Hệ n số góc g của tr đường ìn thẳng. h Hiểu: b Xác ật định n được hệ h số góc
  6. ất của v đường à thẳng h liên à m quan số mật thiết b với góc ậc tạo bởi n đường h thẳng đó ất và trục . Ox. Vận dụng: Giải bài toán bằng cách lập phương trình. C - Kết quả có thể và kết quả thuận lợi. Nhận 3 h - Cách tính xác suất của biến cố băng biết: 1TN ư tỉ số. - Kết 1TN ơ quả có n thể. 1TL g - Cách V tính biến II cố bằng I. tỉ số. M Hiểu: ở - Cách đ tính biến ầ cố bằng u tỉ số. về tí n
  7. h x ác su ất c ủ a bi ế n cố . C - Hai tam giác đồng dạng. Nhận h - Ba trường hợp đồng dạng của hai biết: 1TN 4 ư tam giác. - Hai ơ - Định lý Pythagore và ứng dụng. tam giác n - Các trường hợp đồng dạng của hai đồng g tam giác vuông. dạng. I - Định 1 X lý . Pythago T re thuận. a - Các m trường gi hợp ác đồng đ dạng của ồ hai tam n giác g vuông. d Hiểu: ạ Định lý n Pythago g. re đảo. Vận dụng: Chứng minh
  8. được các trường hợp tam giác đồng dạng. - Định lý Pythago re và ứng dụng. 5 C - Hình chóp đều. Nhận 1 TN + 1TL h - Hình chóptứ giác đều. biết: - ư Hình ơ chóp n đều. g X - Hình . chóp tứ M giác ột đều. số hì n h k h ối tr o n g th ự c tế .
  9. Trà Giác, ngày 16/4/2024 Người ra đề Người duyệt đề (17/4/2024) Châu Thị Ngọc Hồng Nguyễn Thị Nhân DUYỆT CỦA BAN GIÁM HIỆU ……………………………………………………………………………………………………………………………… ………………………………………………………………………………………………………………………………
  10. PHÒNG GD & ĐT BẮC TRÀ MY KIỂM TRA CUỐI KÌ II TRƯỜNG PTDTBT THCS NĂM HỌC 2023 – 2024 LÝ TỰ TRỌNG MÔN: TOÁN – LỚP 8 Thời gian: 90 phút (Không kể thời gian phát đề) (Đề gồm có 02 trang) I. TRẮC NGHIỆM (3,0 điểm) Chọn đáp án đúng và ghi vào giấy làm bài. Câu 1: Cách viết nào sau đây không cho một phân thức? A. B. C. D. Câu 2: Phân thức rút gọn thành A. B. C. D. Câu 3: Phương trình ax + b = 0 là phương trình bậc nhất một ẩn nếu A. a = 0. B. a ≠ 0. C. b = 0. D. b ≠ 0. Câu 4: Số nghiệm của phương trình 2x – 3 = 12 – 3x là A. vô nghiệm. B. vô số nghiệm. C. 1. D. 2. Câu 5: Giải phương trình 5x – 5 = 0 ta được tập nghiệm là A. S = {-2}. B. S = {0}. C. S = {-1}. D. S = {1}. Câu 6: Phương trình ax + b = 0 (a ≠ 0) luôn có A. một nghiệm duy nhất B. một nghiệm là C. vô số nghiệm. D. vô nghiệm. Câu 7: Năm nay An x tuổi, tuổi của An 6 năm sau là A. 6x. B. 6 + x. C. 6 – x. D. x – 6. Câu 8: Đường thẳng nào sau đây song song với đường thẳng A. y = -3x – 1. B. y = 1 – 3x. C. y = -3 + 3x. D. y = 3 – 3x. Câu 9: Gieo hai con xúc xắc. Hãy tính số các kết quả thuận lợi cho biến cố: “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”; A. 3. B. 4. C. 5. D. 6.
  11. Câu 10: Một hộp đựng các tấm thẻ ghi số 11, 12, 13,…, 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Xác suất để rút được một tấm thẻ ghi số nguyên tố là A. 0,2. B. 0,4. C. 0,5. D. 0,6. Câu 11: Nếu ABC DEF thì ta có A. B. C. D. Câu 12: Hình chóp tam giác đều có chiều cao h, diện tích đáy S, thể tích V bằng A. B. C. D. II. TỰ LUẬN (7,0 điểm) Bài 1(1,0 điểm): Thực hiện các phép tính sau: a) b) Bài 2 (1,0 điểm): Cho hàm số y = 2x + 3 có đồ thị là đường thẳng (d). a) Cho biết hệ số góc của đường thẳng (d) và góc tạo bởi (d) với trục Ox là góc gì? b) Tìm x sao cho y = 15. Bài 3 (1,0 điểm): Một hộp đựng 12 tấm thẻ, được ghi số 1; 2; …; 12. Bạn An rút ngẫu nhiên một thẻ từ trong hộp. a) Liệt kê các kết quả có thể của hành động trên. b) Liệt kê các kết quả thuận lợi cho các biến cố sau: A: “Rút được tấm thẻ ghi số chẵn”; B: “Rút được tấm thẻ ghi số nguyên tố”. Bài 4 (1,0điểm): Chứng minh đẳng thức: Bài 5 (2,0điểm): Bóng của một ngôi nhà trên mặt đất có độ dài AC = 2 m. Cùng thời điểm đó, một cột đèn MN = 1,8 m có bóng dài EM = 0,72 m. a) Chứng minh ABC đồng dạng với MNE. B b) Tính chiều cao AB của ngôi nhà. c) Bác An muốn làm một cái thang để lên mái nhà, em hãy tính giúp bác An phải làm cái thang dài bao nhiêu? (Biết để an toàn thì chân thang phải đặt cách chân tường 1,5 m, chiều N dài làm tròn đến m). 1,8m 2m E 0,72m M C A Bài 6 (1,0điểm):
  12. Gọi tên đỉnh, cạnh bên, mặt bên, mặt đáy, đường cao và một trung đoạn của hình chóp tam giác giác đều trong Hình 2. --- Hết --- HƯỚNG DẪN CHẤM VÀ BIỂU ĐIỂM ĐỀ KIỂM TRA CUỐI KÌ II MÔN TOÁN – LỚP 8. NĂM HỌC 2023 – 2024 I. TRẮC NGHIỆM: (3,0 điểm) mỗi câu đúng 0,25 điểm (4 câu đúng 1,0 điểm) Câu 1 2 3 4 5 6 7 8 9 10 11 12 Đáp án C A B C D A B C D B D A II. TỰ LUẬN: (7,0 điểm) (Thí sinh làm đúng tới đâu ghi điểm tới đó, cách khác mà đúng giám khảo thống nhất chia điểm từng phần). Bài Nội dung Điểm Thực hiện các phép tính sau 1,0 a) 0,5 0,2 Bài 1 = 0,2 (1,0) = 0,1 b) 0,5 0,2 0,2 = 1. 0,1 Bài 2 Cho hàm số y = 2x + 3 có đồ thị là đường thẳng (d). 1,0 (1,0) a) Cho biết hệ số góc của đường thẳng (d) và góc tạo bởi (d) với 0,5 trục Ox là góc gì?
  13. Hệ số góc của (d) là a = 2. 0,25 Góc tạo bởi (d) với trục Ox là góc nhọn. 0,25 b) Tìm x sao cho y = 15 0,5 Thay y = 15 vào hàm số y = 2x + 3 ta được 2.x + 3 = 15 0,2 Suy ra 2.x = 12 x = 6 0,2 Vậy khi y = 15 thì x = 6. 0,1 Bài 3 a) 0,5 (1,0) a) Các kết quả có thể của hành động trên là: thẻ số 1, thẻ số 2, thẻ số 3, thẻ số 4, thẻ số 5, thẻ số 6, thẻ số 7, thẻ số 8, thẻ số 9, thẻ số 10, thẻ số 11, thẻ số 12. 0,5 b) 0,5 b) Các kết quả thuận lợi cho biến cố A là: thẻ số 2, thẻ số 4, thẻ số 6, 0,3 thẻ số 8, thẻ số 10, thẻ số 12. - Các kết quả thuận lợi cho biến cố B là: thẻ số 2, thẻ số 3, thẻ số 5, 0,2 thẻ số 7, thẻ số 11. Bài 4 Chứng minh đẳng thức: 1,0 (1,0) Ta có: x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x2 + 2x + 1) + 3 = (x+ 1)2 + 3 > 0 0,2 nên: (Vế trái) 0,3 0,3 0,1 Vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh. 0,1 B N Bài 5 1,8m (2,0) 2m E 0,72m M C A a) Chứng minh hai tam giác ABC và MNE đồng dạng 1,0 Vì cùng một thời điểm các tia nắng mặt trời tạo với mặt đất các góc bằng nhau nên . Thực tế thì ngôi nhà và cột đèn phải vuông góc với mặt đất nên ta có 0,5 ABC và MNE có: 0,2 0,1
  14. Vậy ABC MNE (g - g). 0,2 b)Tính chiều cao ngôi nhà 0,5 0,1 Theo kết quả câu a) ta có: ABC MNE Suy ra: 0,2 0,2 Vậy chiều cao ngôi nhà là 5m. 0,1 c) Tính chiều dài thang 0,5 Gọi chân thang là D ta có tam giác ABD vuông tại A. B 0,1 D A Theo định lí Pythagore ta có BD2 = AB2 + AD2 0,1 = 52 + (1,5)2 = 25 + 2,25 = 27,5 0,2 0,1 Vậy cần cái thang dài khoảng 5,2m. 0,1 Bài 6 – Đỉnh: S. 0,1 (1,0) – Cạnh bên: SD, SE, SF. 0,3 – Mặt bên: các tam giác SDE, SEF, SDF. 0,3 – Mặt đáy: tam giác DEF. 0,1 – Một trung đoạn: SH. 0,1 – Đường cao: SO. 0,1 GV duyệt đề GV ra đề Châu Thị Ngọc Hồng Nguyễn Thị Nhân
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2