intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS Hòa Hội, Xuyên Mộc

Chia sẻ: _ _ | Ngày: | Loại File: DOC | Số trang:4

8
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các bạn hãy tham khảo và tải về “Đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS Hòa Hội, Xuyên Mộc” sau đây để biết được cấu trúc đề thi cũng như những nội dung chính được đề cập trong đề thi để từ đó có kế hoạch học tập và ôn thi một cách hiệu quả hơn. Chúc các bạn thi tốt!

Chủ đề:
Lưu

Nội dung Text: Đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS Hòa Hội, Xuyên Mộc

  1. UBND HUYỆN XUYÊN MỘC MA TRẬN ĐỀ KIỂM TRA HỌC KỲ II TRƯỜNG THCS HÒA HỘI MÔN : TOÁN 9 Ngày kiểm tra: 6 /05/ 2023 MA TRẬN ĐỀ KIỂM TRA HỌC KỲ II - MÔN TOÁN 9 NĂM HỌC 2022 - 2023 Cấp độ Vận dụng Nhận biết Thông hiểu Cấp độ thấp Cấp độ cao Cộng Chủ đề Giải phương trình và - Giải phương trình bậc hai một ẩn. hệ phương trình - Giải hệ phương trình bậc nhất hai ẩn. Số câu - Số điểm 2 2 2,0 2,0 - Vẽ đồ thị (P): y = ax2 ; (d): y = ax+ b (a≠0). Hàm số và đồ thị - Bài toán về giao điểm của (d) và (P). - Điểm thuộc (P) và (d). - Tìm tham số chưa biết Số câu - Số điểm 1 1 2 1,0 0,5 1,5 Ứng dụng phương - Phương trình qui về phương trình bậc hai; trình - Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. - Vận dụng công thức nghiệm của phương trình bậc hai; Sử dụng hệ thức Vi-et. - Bài toán có tính chất thực tế - Tìm GTLN, GTNN,… Số câu - Số điểm 1 2 1 4 1,0 1,5 0,5 30 - Kĩ năng vẽ hình; Góc với đường tròn - Định nghĩa, định lý tứ giác nội tiếp; - Vận dụng các tính chất về quan hệ góc với đường tròn để chứng minh; - Hệ thức lượng trong tam giác vuông để chứng minh và tính; - Bài toán tổng hợp hình học. Số câu - Số điểm 2(Vẽ hình 1 câu) 1 1 1 5 1,5 1,0 0,5 0,5 3,5 Tổng số câu - 5 3 3 2 13 Số điểm 4,0 3,0 2,0 1,0 10
  2. UBND HUYỆN XUYÊN MỘC KIỂM TRA HỌC KỲ II TRƯỜNG THCS HÒA HỘI MÔN : TOÁN 9 Ngày kiểm tra: 6 / 05 / 2023 ĐỀ CHÍNH THỨC Bài 1: (3,0 điểm) 1) Giải phương trình: a) 3x2 + 2x – 8 = 0 b) x4 + 5x2 – 6 = 0 2x − y = 3 2) Giải hệ phương trình: 3x + y = 7 Bài 2: (1,5 điểm) Cho parabol (P): y = − x 2 và đường thẳng (d): y = 3x + 2 a) Vẽ parabol (P). b) Tìm tọa độ các giao điểm của (P) và (d) bằng phép tính. Bài 3: (1,5 điểm) 1) Một đoàn xe vận tải nhận chuyên chở 480 tấn hàng từ cảng về kho. Khi sắp khởi hành được bổ sung thêm 3 xe nữa, nên mỗi xe chở chở ít hơn 8 tấn so với dự định. Hỏi đoàn xe lúc đầu có bao nhiêu xe ? (biết năng suất mỗi xe chở như nhau). 1) Tìm giá trị của m để phương trình: x 2 − mx + m − 1 = 0 luôn có nghiệm x1 ;x 2 sao cho biểu thức A = x1x 2 − x1 − x 2 đạt GTLN 2 2 Bài 4: (3,5 điểm) Cho đường đường tròn (O;R) và một điểm A nằm ngoài (O). Dựng tiếp tuyến AB với (O) ( B là tiếp điểm). Dựng cát tuyến AEF không đi qua O ( E nằm giữa A và F, B thuộc cung lớn EF), kẻ dây cung BC vuông góc với AF tại D (D thuộc AF), kẻ EH vuộng góc với AB (H thuộc AB). a) Chứng minh: Tứ giác BDEH nội tiếp. ? b) Chứng minh: BFE = HDE? c) Kẻ đường kính BI của (O) cắt EF tại G. Chứng minh: AD.AG = AE.AF. d) Chứng minh: DB2 + DF2 + CE2 = 4R2. 2 Bài 5: (0,5 điểm) Giải phương trình 1 + x − x2 = x + 1 − x 3 -----------------------------------Hết----------------------------------
  3. UBND HUYỆN XUYÊN MỘC HƯỚNG DẪN CHẤM KIỂM TRA HỌC KỲ II TRƯỜNG THCS HÒA HỘI MÔN : TOÁN 9 Ngày kiểm tra: 6/ 05 / 2023 Bài Nội dung Điểm 1)a) Lập ∆ = 25 ' 0,5 4 Phương trình có hai nghiệm x1 = ; x2 = −2 3 0,25x2 Bài1 4 2 (3,0điểm b)x + 5x – 6 = 0 ) Đặt: x2 = t (t > 0), pt t2 + 5t – 6 = 0 , giải được t1 = 1; t2 = −6 0,5 t1 = 1 x2 = 1 x = 1 và KL nghiệm 0,5 2x − y = 3 5 x = 10 x=2 0,5- 2) , kết luận nghiệm 0,25x2 3x + y = 7 3x + y = 7 y =1 1. a) Bảng giá trị x -2 -1 0 1 2 0,5 y -4 -1 0 -1 -4 Bài 2 (1,5điểm Đồ thị: (chính xác) 0,5 ) b)Lập được pt hoành độ giao điểm x2 + 3x + 2 = 0. Tìm đúng x1 = −1; x2 = −2 0,25 Tìm đúng y1 = −1; y2 = −4 . Tọa độ giao điểm: (-1;-4) và (-2; -4) 0,25 Bài 3 1)Gọi x(xe) số xe của đoàn xe lúc đầu( x Z, x>0) (1,5điểm số xe của đoàn xe thực tế là x + 3 (xe) 0,25 ) 480 Số tấn hàng mỗi xe chở theo dự định là: (tấn) x 480 Số tấn hàng mỗi xe chở theo thực tế: (tấn) x+3 480 480 0,25 Theo đề bài ta có pt: +8 = x+3 x x2 + 3x – 180 = 0 x = 12 x = −15(l ) 0,25 0,25 Vậy Đoàn xe lúc đầu có 12 xe ∆ = m 2 − 4m + 4 = ( m − 2 ) 2 2)Phương trình có hai nghiệm x1 ; x2 0 Với mọi giá trị của m. Áp dụng Vi-ét: x1 + x2 = m 0,25 x1 x2 = m − 1
  4. A = x1 x2 − x12 − x2 2 = − ( x1 + x2 ) + 3x1 x2 2 2 3 3 −3 −3 3 0,25 A= − m− − GTLN ( A) = m= 2 4 4 4 2 Bài 4 0,5 (3,5điểm B _ ) _ H _ A _ O E _ D _ G _ F _ _ C I _ ᄋ ᄋ a)Ta có: BDE = 900 ; BHE = 900 0,25x2 ᄋ ᄋ 0,25 suy ra : BDE + BHE = 1800 (tổng 2 góc đối) 025 tứ giác BDEH nội tiếp ᄋ ᄋ ᄋ b)Tứ giác BDEH nội tiếp, suy ra EDH = EBH (cùng chắn cung EH) và EBH = BFE ᄋ (cùng chắn cung EB) 0,25x2 ᄋ ᄋ Suy ra EDH = BFE . 0,5 c) ∆ ABG vuộng tại B, Đường cao BD, suy ra: AD.AG = AB2 (HTL). 0,25 C/m ∆ AEB đồng dạng với ∆ ABF, suy ra: AE.AF = AB2 Suy ra: AD.AG = AE.AF 0,25 d)Ta có: DB2 + DF2 = BF2 (Pitago). Suy ra: DB2 + DF2 + EC2 = BF2 + EC2 (1) 0,25 ᄋ ᄋ Ta có: CI song song với EF (cùng vuông góc với BC), suy ra EC = FI , suy ra EC = FI (2) Mà: BF2 + FI2 = BI2 = 4R2 (Pitago) (3) Từ (1); (2) và (3), suy ra đpcm 0,25 2 Giải phương trình 1 + x − x2 = x + 1 − x Bài 5 3 (0,5điểm t 2 −1 ) Đặt: x + 1 − x = t x − x2 = ( ∗) 2 Thay vào được pt: t2 – 3t + 2 = 0, suy ra t1 = 1; t 2 = 2 0,25 t1 = 1 x − x2 = 0 x ( 1− x) = 0 x = 0; x = 1 t2 = 2 4 x 2 − 4 x + 9 = 0 . Phương trình vô nghiệm Vậy pt đã cho có hai nghiệm x1 = 0; x2 = 1 0,25 Lưu ý: HS có thể trình bày cách giải khác, giám khảo cân đối cho điểm.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1