Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang
48
CHÆÅNG 3 PHÆÅNG PHAÏP TÊNH MAÛCH TUYÃÚN TÊNH HÃÛ SÄÚ HÀÒNG ÅÍ CHÃÚ ÂÄÜ XAÏC LÁÛP ÂIÃÖU HOÌA
Ta âaî biãút khi maûch âiãûn laì maûch tuyãún tênh hãû säú hàòng åí chãú âäü xaïc láûp våïi kêch thêch âiãöu hoìa thç mä hçnh cuía noï chênh laì hãû phæång trçnh KF 1, 2 daûng âaûi säú phæïc. Cáön phaíi nãu nhæîng phæång phaïp âãø giaíi hãû âaûi säú âoï cho ra nhæîng âaïp æïng cuía maûch âiãûn. Vç maûch KF coï âàûc âiãøm laì coï thãø âo traûng thaïi åí nhæîng yãúu täú kãút cáúu khaïc nhau : åí nhaïnh, åí âènh, åí voìng...Vç váûy coï hãû phæång trçnh tæång æïng våïi caïc biãún nhaïnh, biãún âènh, biãún voìng nãn coï caïc phæång phaïp giaíi cho tæìng biãún.
Chuï yï vç caïc âënh luáût KF daûng phæïc giäúng hãût cho træåìng håüp maûch thuáön tråí hoàûc maûch coï doìng khäng âäøi. Chè coï khaïc laì khi âoï caïc biãún traûng thaïi vaì caïc toaïn tæí âãöu laì säú thæûc U, I, E, R, g. Vç váûy nhæîng phæång phaïp seî nãu cuîng duìng cho maûch coï doìng khäng âäøi hoàûc thuáön tråí. Biãún nhaïnh - phæång phaïp doìng (aïp) nhaïnh.
Maûch coï m nhaïnh, d âènh nãn nãúu láúy biãún laì doìng (aïp) nhaïnh thç säú áøn säú doìng (aïp) nhaïnh laì m, váûy cáön viãút m phæång trçnh theo biãún laì doìng (aïp) nhaïnh theo caïc âënh luáût KF1, KF2. Ta viãút âæåüc (d-1) phæång trçnh KF1 theo doìng (aïp) nhaïnh daûng :
j
(3-1)
k k . ∑ = I
∑
Viãút âæåüc (m-d+1) phæång trçnh KF2 theo doìng (aïp) nhaïnh daûng :
=
(3-2)
. E . IZ L L L
∑
=
j
. UY k k k
∑
∑
(3-3)
Hoàûc :
=
. U . E L L
∑
∑
∑ ⎧ ⎪ ⎨ ⎪ ⎩ Táút nhiãn âãø viãút caïc phæång trçnh âaûi säú trãn cáön phaíi quy æåïc chiãöu dæång caïc
doìng âiãûn vaì chiãöu dæång caïc voìng.
Giaíi hãû phæång trçnh âaûi säú trãn ta seî âæåüc giaï trë phæïc doìng (aïp) caïc nhaïnh. Coï
=
0
(3-4)
nh . IA t
=
doìng (aïp) nhaïnh qua âënh luáût Äm tênh aïp (doìng) cuía nhaïnh. Hãû phæång trçnh daûng ma tráûn theo biãún doìng nhaïnh : ⎧ ⎪ ⎨ . ⎪⎩ IZC Vê duû : Láûp hãû phæång trçnh biãún nhaïnh âãø giaíi maûch âiãûn hçnh (h.3-1). Maûch
âiãûn coï d = 3, m = 5.
Hãû phæång trçnh theo daûng
nh nh nh t . EC t
. I1
Z1
. I5
Z5
Z3
. I3
a
b
. I2
. I4
Z2
Z4
1
3
=
0
Nuït a :
II
I
. E4
.III E5
. E1
3
5
=
biãún nhaïnh : . −− I 2 . +− I 4
. I . I
Nuït b :
0
+
=
. ZI 1
. I . I . ZI 2
. E
Voìng I :
1
1
2
c
h.3-1
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang 49
+
−
. E
Voìng II :
4
3
4
2
5
+
=
−
. ZI 3 . ZI 5
. ZI 4 . ZI 4
. ZI 2 . E
−= . E
4
Voìng III :
4
5 Hãû phæång trçnh daûng ma tráûn :
1
2
2
1
3
++−
=
−
11
1
0
0
0
. I
. I
. I
nh
=
. IA t
→= 0
3
−
−
0
0
11
⎡ ⎢ ⎣
⎤ ⎥ 1 ⎦
5
4
3
−+−
=
. I
. I
. I
0
⎡ ⎢ ⎢ ⎣
⎤ ⎥ ⎥ ⎦
4
5
. I . I . I . I . I
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
1
0
0
0
0
Z
1
0
0
1
Z
0
0
0
0
−
1
1
0
2
2
=
=
. E
0
Z
0
0
0
0
1
0
[ ] C,
[ Z,
]
nh
nh
3
. E . E . E
⎡ ⎢⎣
⎤ =⎥⎦
0
0
Z
0
0
0
1
1
4
3 . E
4
0
0
0
Z
0
0
0
1
5
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
− . E
5
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
. IZC
=
↔
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . EC t
nh
t
nh
nh
1
Z
0
0
0
0
1
. E
1
1
1
0
0
0
1
1
0
0
0
0
Z
0
0
0
2
0
2
=
−
0
1
1
1
0
0
1
1
1
0
−
0
0
Z
0
0
3
3
0
0
0
1
1
0
0
0
1
1
0
0
0
Z
0
4
. E
⎡ ⎢ ⎢ ⎢ ⎣
⎡ ⎢ ⎢ ⎢ ⎣
⎤ ⎥ ⎥ ⎥ ⎦
4
4
0
0
0
0
Z
5
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
. E
5
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎤ ⎢ ⎥ ⎢ 0 ⎥ ⎢ −⎥ ⎢ ⎦ ⎢ ⎢ ⎣
. I . I . I . I . I
5
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
−
−
=
0
+
−
=
0
Hãû phæång trçnh theo aïp nhaïnh :
• • 2 1 3 • UYUYUY 2 3 1 • • 4 3 5 • UYUYUY 4 5 3
=
1 2 • • + UU 1 • E
−
+
−=
4 4 3 2 • • • UUU • E
−
=
⎧ ⎪ ⎨ ⎪⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
5 4 4 • • + UU 3 • E • E
=
0
Hãû phæång trçnh daûng ma tráûn viãút theo biãún aïp nhaïnh :
(3-5)
=
t . UYA nh nh
⎧ ⎪ ⎨ . ⎪⎩ UC t
Biãún voìng - phæång phaïp doìng âiãûn voìng : Ta âaî biãút caïc doìng buì cáy trãn mäüt graph laìm thaình mäüt táûp âuí doìng nhaïnh âäüc láûp. Nhæîng doìng áúy chaíy kheïp kên qua nhæîng voìng xaïc âënh trãn cáy âaî choün, laìm thaình mäüt táûp doìng voìng buì caình. Cuîng coï thãø choün caïc doìng chaíy kheïp kên caïc màõt læåïi
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
. EC t nh nh
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang
50
mäüt graph phàóng. Caïc doìng buì caình (doìng chaíy trong caïc màõt læåïi) goüi laì doìng voìng. Sau khi biãút doìng voìng coï thãø tênh âæåüc doìng nhaïnh vaì aïp nhaïnh. Váûy âàût biãún laì doìng
), nãn säú áøn säú laì
voìng (
chênh bàòng säú voìng âäüc láûp, chênh bàòng säú buì caình = (m . I
. Qua khaïi niãûm âënh nghéa
- d + 1). Tæïc laì ta cáön viãút (m - d +1) phæång trçnh theo
. I . I v v
vãö doìng voìng ta tháúy chuïng âaî chæïa âæûng sæû thoía maîn luáût KF1 (tênh liãn tuûc) nãn
v
coï yï nghéa seî laì phæång trçnh KF2. Ta coï trçnh tæû giaíi
phæång trçnh liãn hãû caïc biãún
maûch âiãûn bàòng phæång phaïp doìng voìng nhæ sau : Choün vaì daïnh säú, quy æåïc chiãöu dæång cuía caïc doìng voìng (doìng buì caình hoàûc doìng màõt læåïi) kãø caí caïc nguäön doìng âènh âaî cho kheïp kên qua nhæîng voìng âäüc láûp. Viãút (m - d +1) phæång trçnh KF2 theo biãún voìng. Læu yï coï caí nhæîng aïp do häù caím,
. I v
,
(3-6)
aïp do caïc nguäön doìng gáy trãn voìng
Giaíi hãû phæång trçnh âæåüc caïc doìng voìng sau âoï suy ra caïc doìng nhaïnh laì täøng âaûi säú caïc doìng voìng qua nhaïnh âoï.
Vê duû : Láûp hãû phæång trçnh biãún voìng âãø giaíi maûch âiãûn hçnh (h.3-2)
. E . E = jk . JZ mk j m
,
,
.
Choün 3 doìng voìng theo màõt læåïi
Z6
. I . I . I 1v 2v 3v
. I6
Phæång trçnh KF2 cho caïc voìng :
III
Z3
+
+
+
−
=
Z(
Z
Voìng I :
Z5
. I . E
. I5
)Z 3
1 1v 2 2 3 1
. I3
. I1
. I 4
+
+
+
+
=
Z(
Z
Voìng II :
)Z 5
. I . E 4 2v 2 2 5 4
. I2 Z2
Z4
Z1
I
II
+
+
+
−
=
Z(
Z
0
Voìng III :
)Z 3
. I 6 3v 5 . ZI 2v . ZI 1v . ZI 2v . ZI 3v . ZI 3v . ZI 1v 5 3
. E4
. . E1 E1
,
h.3-2
1v
,
−
=
+
=
+
+
Giaíi hãû phæång trçnh âæåüc caïc doìng voìng . I . I
sau âoï suy ra doìng nhaïnh . . I I
, . I
. I . I . I . I= 2v 3v 1 1v
Z(
Z
,
,
. Ta tháúy
laì täøng tråí tham
)Z 3
, . I
gia voìng I laì voìng âang viãút coï
chaûy qua ta kê hiãûu laì Z
. I . I . I . I . I = 4 . I = 6 2v 2v 3v 3v 1v 1v 3 2 2 1
v1, Z2 laì täøng tråí nhaïnh chung giæîa voìng I vaì voìng II kê hiãûu laì Z12 = Z2 , tæång tæû Z3 = Z13 laì täøng tråí nhaïnh chung giæîa voìng I vaì voìng III, Z5 = Z23 laì täøng tråí nhaïnh chung giæîa voìng II vaì voìng
+
−
=
1v
III. Luïc naìy phæång trçnh voìng I âæåüc viãút goün laì :
. 1
+
=
+
. E 1v 12 13
Tæång tæû nhæ váûy cho caïc voìng khaïc :
4
−
=
+
0
. ZI 3v . E 12 25 2v
Trong âoï : Zv2 = Z2 + Z4 + Z5, Zv3 = Z3 + Z5 + Z6.
: laì suût aïp do doìng voìng gáy ra trong baín thán voìng I, luän coï dáúu dæång.
. ZI 1v . ZI 1v . ZI 2v 25 . ZI 2v . ZI 3v . ZI 1v 13 . ZI 2v . ZI 3v 3v
: laì suût aïp do doìng voìng m coï nhaïnh chung våïi voìng l âang viãút gáy ra trong
1v
nhaïnh chung âoï, dáúu + hay - tuìy chiãöu cuía doìng voìng m qua nhaïnh chung cuìng chiãöu hay ngæåüc chiãöu våïi doìng voìng l âang xeït. Tæì âáy ta âæa ra daûng täøng quaït :
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
. ZI 1v . ZI vm lm
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang 51
±
=
n . E . ZI vk vk . ZI vl kl vk
∑
∑
E∑ laì täøng âaûi säú Sââ thuäüc voìng k, Sââ naìo cuìng chiãöu våïi voìng thç coï dáúu dæång, ngæåüc chiãöu thç dáúu -. Nãúu trong maûch âiãûn coï nhæîng nguäön doìng kêch thêch båm vaìo càûp nuït naìo âoï thç coi âoï laì doìng âäüc láûp nhæ âaî biãút J. Vç phæång trçnh KF2 laì viãút cho aïp nãn phaíi cho doìng J chaûy qua mäüt nhaïnh naìo âoï giæîa hai nuït maì J båm
l . vk
=
. E
âãø åí vãú phaíi phæång trçnh giäúng nhæ caïc
. Luïc naìy coï
vaìo taûo ra
=
±
±
. E
. E
phæång trçnh :
(3-8)
vk
j
. ZI vl
kl
. ZI vk
vk
. . = ZJU k k j . E n
∑
∑
l
Læu yï trong maûch r, L, M, C ta coï xeït tênh tæång häù nãn Zkl = Zlk nãn hãû säú Zkl âäúi xæïng qua truûc cheïo cuía [Znh].
=
(3-9)
Phæång trçnh daûng ma tráûn :
. ICZC nh
t
v
. EC t
nh
Khi coï caïc nguäön doìng j thç vãú phaíi coï thãm thaình pháön CtZnhjnh. Vê duû 2 : Láûp hãû phæång trçnh biãún doìng voìng
j
giaíi maûch âiãûn hçnh (h.3-3). Ta tuìy yï giaí thiãút nguäön j kheïp maûch qua nhaïnh Z3 taûo
Z2
Z3
Z1
Z.j
âaî biãút .
nãn aïp
. U = j3
3
I
II
+
−
=
Z(
. I
Phæång trçnh voìng I :
1
)Z 2
1v
2
2
. E1
. E2
−
=
+
−
. I
. . − EE 1 . Zj
. E
Z(
. ZI 2v . ZI 1v
2
3
2
2
)Z 3
2v
j
(h.3-3)
Z.j
laì aïp råi trãn Z3 do nguäön doìng j gáy ra nàòm
Phæång trçnh voìng II : . U = j3
3
åí vãú traïi phæång trçnh, vç j cuìng chiãöu voìng nãn mang dáúu +, chuyãøn sang vãú phaíi nãn âäøi thaình dáúu -. Vãö màût toaïn hoüc ta tháúy phæång phaïp doìng voìng thæûc cháút laì tênh caïc doìng phuû thuäüc theo caïc doìng âäüc láûp qua KF1 räöi thay vaìo phæång trçnh KF2 âãø âæåüc phæång trçnh KF2 theo biãún voìng, tæïc laì âæa phæång trçnh KF1 vaìo phæång trçnh KF2. Biãún âènh - phæång phaïp âiãûn thãú âènh :
Ta âaî coï mäúi liãn hãû giæîa âiãûn thãú âènh våïi aïp nhaïnh nãn nãúu choün biãún laì thãú âènh láûp hãû phæång trçnh thãú âènh giaíi ra caïc thãú âènh thç suy ra âæåüc caïc aïp nhaïnh räöi doìng nhaïnh. Maûch âiãûn coï d âènh thç coï d thãú âènh, song phaíi so våïi mäüt thãú mäúc (thæåìng choün mäúc laì 0), nãn säú thãú cáön xaïc âënh laì (d -1), tæïc laì säú áøn säú thãú âènh laì (d- 1).
Váûy ta cáön viãút (d-1) phæång trçnh theo áøn säú laì thãú âènh. Khaïi niãûm thãú tæì tênh cháút thãú noï âaî chæïa âæûng sæû thoía maîn luáût KF2 nãn chè coï phæång trçnh KF1 liãn hãû caïc thãú måïi coï yï nghéa. Váûy cáön viãút (d-1) phæång trçnh KF1 theo biãún laì thãú âènh. Nhæng ta måïi chè coï phæång trçnh KF1 cho biãún laì caïc doìng nhaïnh, nãn phaíi tçm biãøu thæïc giæîa caïc doìng nhaïnh våïi thãú âènh âãø coï phæång trçnh KF1 theo biãún laì thãú âènh. Ta âaî coï âënh luáût Äm liãn hãû giæîa aïp våïi doìng nhaïnh maì aïp nhaïnh laûi liãn hãû våïi thãú nãn ta láûp âæåüc quan hãû giæîa doìng nhaïnh våïi thãú âènh.
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang
52
Zkl
. Ikl
k
l
Âäúi våïi nhaïnh khäng nguäön hçnh (h.3-4) ta coï :
h.3-4
=ϕ−ϕ=
(
ϕ−ϕ= k
Y). kl
ϕ−ϕ k Z
l . U . =⇒ I k l kl . Z.I kl kl kl l kl
. Ekl
Zkl
. Ikl
k
l
h.3-5
−ϕ=ϕ
−
(3-10) Âäúi våïi caïc nhaïnh coï nguäön nhæ hçnh (h.3-5) ta coï : . I
(
ϕ−ϕ=⇒− kl
Y). kl
(3-11)
+
(
. E . Y.E kl kl . Z.I kl kl kl k k l l
cuìng chiãöu våïi
thç
(3-12)
ϕ−ϕ= k
Y). kl
. I . I . E kl l kl . Y.E kl kl kl
Nhæ váûy khi . E
coï dáúu +. Sau khi coï biãøu thæïc doìng
Z6
Tæïc laì Sââ naìo cuìng chiãöu doìng thç theo thãú ta viãút âæåüc hãû phæång trçnh KF1 theo thãú.
. Y.E
. I6
Vê duû : Láûp hãû phæång trçnh theo biãún thãú
Z3
Z5
. I5
. I3
b
a. I1
c. I4
Z1
. I2 Z2
Z4
âènh âãø giaíi maûch âiãûn nhæ hçnh (h.3-6) Choün âènh d laìm mäúc, viãút phæång trçnh KF1 cho caïc âènh coìn laûi : . . I I
0
Âènh a :
. I 6 1
. . E1 E1
. E4
0
Âènh b :
d h.3-6
=−− 3 . . . =++− I I I 3 . I
5 2
0
Âènh c :
=+− 5
ϕ−
=
+
Thay caïc doìng âiãûn trong phæång trçnh trãn theo biãún âènh : Vê duû thay vaìo âènh a : . I
. I . I 4 6
0(
(
(
ϕ−ϕ= a
ϕ−ϕ= a
Y). 6
+
=
0(
0
Ta coï :
. . I,Y.EY). . I,Y). 3 1 6 b 3 1 1 1 a c
ϕ−ϕ− a
(Y). 3
ϕ−ϕ− b
Y). 6
ϕ−
ϕ−
ϕ+
ϕ−
= 0Y
ϕ− . + YEY 1
. (Y.EY). 1 1 1 c b a
Y 3
Y 3
Y 6
ϕ−⇒
+
+
ϕ+
ϕ+
+
=
)YYY( 3
1 1 a a b a c 6
Y 3
ϕ+ . 0YEY 1
ϕ⇒
+
+
ϕ−
ϕ−
=
1 6 b a c 1 6
)YYY( 3
Y 3
Y 6
ϕ−
ϕ
+
+
. YE 1 1 1 a b c
Y 3
ϕ
+
+
ϕ−
ϕ−
=
Âènh c :
)YYY( 5
6 Tæång tæû nhæ váûy cho caïc âènh khaïc : ϕ− Âènh b : )YYY( 3 5 2 b c a 5
Y 5
= 0Y . YE 4
Y 6
4
Qua caïc phæång trçnh viãút theo thãú caïc âènh, vê duû âènh a ta coï nháûn xeït : säú haûng âáöu tiãn ϕa(Y1+Y3+Y6) laì têch thãú cuía âènh viãút våïi täøng täøng dáùn caïc nhaïnh näúi våïi âènh viãút, (Y1+Y3+Y6) = Ya laì täøng táút caí täøng dáùn cuía caïc nhaïnh coï näúi âãún nuït a. Caïc säú haûng sau cuía vãú traïi : ϕb.Y3, ϕc.Y6 laì têch thãú cuía âènh coï näúi våïi âènh âang viãút qua mäüt nhaïnh våïi täøng dáùn cuía nhaïnh âoï. Kê hiãûu ϕk.Yka , trong âoï Yka laì täøng dáùn cuía nhaïnh näúi giæîa nuït âang viãút a våïi nuït k, ϕkYka luän mang dáúu -. Coìn vãú bãn phaíi
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
4 6 b c a
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang 53
: laì têch cuía Sââ våïi täøng dáùn cuía nhaïnh chæïa Sââ, noï coï dáúu "+" khi Sââ E
. YE 1 1
ϕ
ϕ
−
=
Täøng quaït phæång trçnh nuït a laì :
Y a
l
Y ka
hæåïng vaìo nuït viãút. Ngæåüc laûi seî coï dáúu "-". Nuït naìo coï bao nhiãu nhaïnh coï chæïa Sââ näúi vaìo thç coï báúy nhiãu säú haûng cuía vãú phaíi. n ∑
k a . YE m ma
∑
ϕ
−
ϕ
=
Y
(3-13)
Nuït b laì :
Y b
1 l 1 n
b k kb . YE ib i
∑
∑
ϕ
−
ϕ
=
Nuït c laì :
Y c
1 l 1 n
Y kc
c k . YE pc p
∑
∑
Khi coï nhæîng nguäön båm vaìo âènh thç ta phaíi âæa doìng j vaìo vãú phaíi cuía phæång trçnh âènh âoï.
1 1
ϕ
−
ϕ
=
±
Y a
Y ka
l n . J a k . YE m ma a
∑
∑
±
ϕ
−
ϕ
=
Y
(3-14)
Y b
1 1 l n . J . YE ib i b kb b k
∑
∑
Ta coï trçnh tæû giaíi maûch bàòng phæång phaïp thãú âènh laì : Choün mäüt âènh laìm mäúc våïi thãú 0. Viãút (d-1) phæång trçnh daûng (3-14) cho caïc âènh coìn laûi. Qui æåïc chiãöu dæång cuía caïc doìng nhaïnh âãø sau khi giaíi ra caïc thãú âènh tæì hãû (3- 14) thç tæì (3-11) tênh âæåüc caïc doìng nhaïnh.
Y
(3-15)
1 1
Coï thãø biãøu diãùn hãû phæång trçnh thãú âènh dæåïi daûng ma tráûn : . ⎤ +⎥⎦ J
⎡=ϕ [ ] ⎢⎣
[Y] : ma tráûn vuäng täøng dáùn âènh. [ϕ] : ma tráûn cäüt âiãûn thãú âènh.
. EYA nh nh t
] : ma tráûn cäüt caïc nguäön doìng âènh.
[
Træåìng håüp âàûc biãût khi maûch gäöm nhiãöu nhaïnh näúi // nhæ hçnh (h.3-7). Maûch coï hai âènh nãn chè coï mäüt phæång trçnh thãú âènh.
. J
ϕ
+
+
−
+
+
= YEYEYE)YYYY(
Phæång trçnh âènh a :
4
Xaïc âënh âæåüc ngay aïp giæîa hai âènh a,b laì :
. . . a 1 2 3 4 3 3 1 1 4
a
+
. . 3 4 1
. I1
=−ϕ=ϕ−ϕ=
0
. U ab a b a
. I4
− 1 +
+
Z1
Z4
. YEYEYE 4 3 + )YYYY( 1 2 4 3
. I2 Z2
. . E1 E1
. E4
. I3 Z3 . E3
Tæì âoï ruït ra cäng thæïc tçm aïp cho maûch coï hai nuït ráút tiãûn duûng laì :
(3-16)
b h.3-7
Y a
. YE . U a
∑= ∑ So saïnh 3 phæång phaïp giaíi maûch : Chuïng âãöu laì phæång phaïp cå baín vç âãöu dæûa trãn caïc âënh luáût KF.
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang
54
Phæång phaïp biãún nhaïnh cáön láûp vaì giaíi hãû m phæång trçnh nãn khäúi læåüng tênh
Phæång phaïp biãún voìng coï (m-d+1) phæång trçnh. Phæång phaïp thãú âènh coï (d-1) phæång trçnh. Phæång phaïp naìy seî ráút thuáûn tiãûn cho
toaïn låïn. maûch coï hai âènh. Phæång phaïp tênh maûch tuyãún tênh coï häù caím : Caïc phæång phaïp tênh :
Ta âaî biãút maûch coï häù caím chè khaïc maûch khäng coï häù caím laì coï thãm âiãûn aïp häù caím trãn caïc cuäün dáy coï quan hãû häù caím våïi nhau. Vãö màût váût lyï baín cháút tæû caím vaì häù caím nhæ nhau. Nãn maûch coï häù caím váùn nghiãûm âuïng caïc luáût KF1, KF2. Váûy coï thãø duìng caïc phæång phaïp tênh maûch âiãûn âaî nãu trãn âãø tênh maûch âiãûn coï häù caím. Tuy nhiãn trong maûch coï häù caím, aïp åí mäüt nhaïnh (thãú åí hai âáöu nhaïnh) khäng nhæîng phuû thuäüc doìng qua nhaïnh âoï maì coìn tuìy thuäüc vaìo doìng caïc nhaïnh khaïc, luïc naìy viãûc ruït ra quan hãû thãú âènh theo doìng seî ráút phæïc taûp nãn láûp phæång trçnh maûch theo phæång phaïp thãú âènh ráút phæïc taûp. Vç váûy, thæåìng khäng duìng phæång phaïp thãú âènh âãø tênh maûch âiãûn coï häù caím.
Khi duìng phæång phaïp doìng nhaïnh vaì doìng voìng âãø tênh maûch coï häù caím nhåï thãm aïp häù caím vaìo phæång trçnh KF2. AÏp häù caím coï thãø dæång hay ám tuìy theo chiãöu doìng âiãûn, cæûc cuìng tênh vaì chiãöu dæång caïc voìng. Aïp häù caím viãút dæåïi daûng phæïc :
ω±=
=ω
jxMj,IMj
(3-17)
. . U kl kl l
jωL2
R2
M Vê duû : Láûp phæång trçnh âãø giaíi maûch âiãûn hçnh (h.3-8)
. I2
∗
jωL2
R2
jωM
. I2
∗
jωL1 II
R1
. I1
∗
jωM
jωL1
R1
. I1
R
I
. U
. I
∗ . U
. I
h.3-8
h.3-9
Hãû phæång trçnh theo biãún doìng nhaïnh :
=−−
0
ω+
=
ω+
. I . I . I 2 1
)Lj 1
ω+
=
ω+
. . + R(IRI 1 1 . . UIMj 2
)Lj
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
ω+
ω+
=
+
. . + R(IRI 2 2 2 . . UIMj 1
+ RR(
)Lj 1
Hãû phæång trçnh theo biãún doìng voìng :
ω+
ω+
=
+
. I . IMj 1 1v . . URI 2v 2v
+ RR(
)Lj
⎧ ⎪ ⎨ ⎪⎩
+
+
= LL
L
M2
Täøng tråí cuía caïc cuäün dáy màõc näúi tiãúp coï häù caím : Khi màõc näúi tiãúp thuáûn 2 cuäün dáy thç âiãûn caím cuía maûch :
. I . IMj 2 2 2v . . URI 1v 1v
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
2 1
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang 55
+
−
= LL
L
M2
Khi màõc näúi tiãúp ngæåüc 2 cuäün dáy thç âiãûn caím cuía maûch :
+
±
= ZZ
(3-18).
Nãn suy ra täøng tråí phæïc cuía hai cuäün dáy màõc näúi tiãúp :
=
+
+
>
=
+
−
Z
Z
Z
Z2
Z
Z
Z
Z2
nãn nãúu cuìng aïp âàût vaìo U thç Ing > Ith.
th
1
2
M
ng
1
2
M
Täøng tråí hai cuäün dáy coï häù caím näúi song song : Khi näúi song song thuáûn nhæ hçnh (h.3-9). .
.
.
=
+
+
. I
Tæì :
. += I 1
. = ZIU,I 2
1
. . ZIU,ZI M2
2
2
. M1 ZI
1 Xaïc âënh täøng tråí tæång âæång cuía hai nhaïnh laì :
(3-19)
=
Z
1 Z 2 Z2 1 2 M
ZZ 1 2 + Z
Z
(3-20)
=
Z
th// 2 − Z M − Z2 2 1 M
Tæång tæû khi hai cuäün näúi song song ngæåüc seî coï täøng tråí tæång âæång laì : ZZ 1 2 + Z
Z
Nhæ váûy : Z//ng < Z//th Cäüng hæåíng trong maûch häù caím :
Trong kyî thuáût âiãûn tæí vaì thäng tin thæåìng duìng caïc maûch dao âäüng coï häù caím
våïi hãû säú pháøm cháút cao nhæ hçnh (h.3-10).
ng // 2 − Z M + Z2 1 2 M
Ta xaïc âënh âæåüc täøng tråí âáöu vaìo cuía maûch laì :
=
−
Z
Z
=
ω=
=
Z
R
−ω+ Lj
Z,
Z,Mj
R
−ω+ Lj
Trong âoï :
1 1 âv 2 Z M Z 2 • U = • I 1
ω
ω
j C
j C
=
+
+
−
Z
R
(3-21)
1 1 1 M 2 2 2 1 2
⎞ ⎟⎟ ⎠
⎛ ⎜⎜ xj ⎝
Qua biãøu thæïc pháön thæûc cuía Zâv tháúy tråí taïc duûng âáöu vaìo nhçn tæì hai cæûc cuäün
1 âæåüc tàng thãm læåüng
so våïi R1. Sæû tàng naìy laì do sæû tiãu taïn nàng læåüng
1 âv 1 2 xx 2 M 2 + R x 2 2 2 2 Rx 2 M 2 + R x 2 2 2
−
trãn tråí taïc duûng cuía maûch voìng 2. Trong pháön aío coï thãm thaình pháön
2 Rx M 2 2 + x R 2 2 2
⎛ ⎜⎜ ⎝
−
0
x
(caïc thäng säú voìng 2 khäng âäøi)
Nãúu cho C1 thay âäøi âãø âaût
2 xx 2 M 2 + R x 2 2 2
⎞ ⎟⎟ ⎠ noï laìm tàng hoàûc giaím khaïng âáöu vaìo so våïi x1 âiãöu naìy tuìy thuäüc vaìo dáúu cuía x2. Sæû tàng hoàûc giaím naìy tæång æïng våïi sæû tàng hoàûc giaím cuía tæì thäng täøng so våïi tæì thäng tæû caím (do häù caím gáy nãn). Maûch coï häù caím coï thãø coï nhiãöu daûng cäüng hæåíng do sæû thay âäøi caïc thäng säú phaín khaïng hay táön säú. 2 xx M 2 2 + R x 2
⎞ =⎟⎟ ⎠
⎛ ⎜⎜ ⎝
1 2 2
=
I
thç caïc doìng I1, I2 seî âaût trë säú cæûc âaûi :
+
+
U R/(Rx 2
=
I
1 1 max 2 M 2 2 2 )x 2 1
R Ix max 1M + x R
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
2 max 2 2 2 2
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang
56
Âáy laì traûng thaïi cäüng hæåíng âàûc biãût thæï nháút.
Traûng thaïi cäüng hæåíng thæï hai coï âæåüc khi thay âäøi C2 (caïc thäng säú cuía voìng 1 giæî
−
0
x
khäng âäøi) âãø taûo ra :
. Khi âoï :
⎛ ⎜⎜ ⎝
U
1 2 xx M 2 2 + x R 2 2 2
=
=
I
I,
⎞ =⎟⎟ ⎠ U 1 R2
RR2
M
M
1 1 max 2 max 1 1 2
. I1
. I1
. I2
. I2
∗
∗
∗
∗
C1
C2
C2
. U1
L1
L2
. U1
L1
L2
R1
R2
R1
R2
h.3-10
h.3-11
Khaïi niãûm vãö truyãön nàng læåüng âiãûn tæì giæîa caïc cuäün dáy häù caím :
chaíy trong nhaïnh l bàòng
ω=
Âiãûn aïp häù caím gáy nãn trãn cuäün thæï k båíi doìng . U
. I l
) vuäng pha våïi doìng
. Âiãûn aïp naìy (
, nhæng noïi chung
vaì
. IMj . U . I . I . I M 1 l k l kl
thæåìng khäng vuäng pha våïi doìng
. Âiãöu áúy coï
khäng truìng pha nhau nãn aïp
nghéa cuäün k nháûn mäüt cäng suáút taïc duûng cuía træåìng âiãûn tæì :
. I . U k kl
∧ ∧
=
≠
π≠
P
)2/
IU kl
kl kl kM k k k
( I,Ucos
)
( I,Uvç(0
)
Vç trãn âiãûn caím Lk khäng coï tiãu taïn nãn cäng suáút nháûn âæåüc âoï bàõt buäüc phaíi âæåüc truyãön taíi tæì cuäün k âãún caïc pháön tæí coï häù caím våïi noï. Khi PkM > 0 ta noïi cuäün k nháûn cäng suáút PkM âãø truyãön âãún caïc pháön tæí khaïc bàòng häù caím. Khi PkM < 0 ta noïi cuäün k phaït ra cäng suáút âiãûn tæì cho maûch. Táút nhiãn luïc naìy cäng suáút phaíi do caïc pháön tæí khaïc coï häù caím chuyãøn âãún noï.
Vê duû : Tênh maûch âiãûn åí hçnh (h.3-11) tæì âoï nháûn xeït vãö sæû truyãön cäng suáút häù
caím.
ω+
=
ω+
)Lj 1
Phæång trçnh cho hai voìng :
+
. R(I 1 1 . . UIMj 2
0
1 ω C
⎛ ⎜⎜ −ω+ Lj ⎝
⎞ ⎟⎟ ⎠
⎡ . RI ⎢ 2 ⎣
⎤ =⎥ ⎦
⎧ ⎪⎪ ⎨ ⎪ ⎪ ⎩
: U=10V, R1=100Ω, R2=500Ω, ωL1=500Ω, ωL2=1500Ω, ωM =700Ω,
Våïi 1/ωC=1800Ω.
+
+
=
500j
. ω IMj 1 2 2 2
700j
10
( 100
)
Thay säú ta âæåüc :
=
+
. I . I 1 2
300j
0
700j
)
( 500
−
−
−
. I . I 2 1
=
〈−
−=
〈
=
〈−
− . 0 I,A7,48
10.8
10.7,9
72
10.7,9
7,107
Giaíi ra ta âæåüc :
. 0
Do coï häù caím nãn åí cuäün L2 coï cäng suáút âiãûn tæì :
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
3 3 0 3 . I 1 2
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang 57
=
P
cos
IU 2M2
∧ → → )I,U( M2 2 M2
ω=
=
=
700j
=
−=
P
10.7,9.67,5
7,107
W10.7,4
〈− 7,48 ( −−
10.8. [ 0 cos 41
〈 67,5 ] )
− 3
− 3
=
=
W10.7,4
10.7,9(
2 500.)
.
Dáúu træì coï nghéa L2 phaït ra mäüt cäng suáút âiãûn tæì 4,7mW cho maûch thæï cáúp. Cäng suáút naìy do pháön tæí L1 chuyãøn qua bàòng häù caím vaì âuïng bàòng cäng suáút tiãu taïn åí maûch thæï cáúp
2 RI 2
2
− 3 0 . U . IMj 0 V41 M2 1 − − 3 0 3 M2
.
.
=
cos
Ta cuîng tháúy noï bàòng
IU 1M1
P M1
)I,U( M1 1 Thay thãú âàóng trë nhæîng liãn hãû häù caím :
Thay thãú pháön cuía giaín âäö coï chæïa häù caím bàòng mäüt giaín âäö khäng coï häù caím, trong mäüt säú træåìng håüp seî laìm cho sæû phán têch vaì tênh toaïn maûch âiãûn âæåüc âån giaín. Phæång phaïp âoï goüi laì thay thãú âàóng trë.
Vê duû ta tçm mäüt giaín âäö khäng coï häù caím âàóng trë våïi giaín âäö cuía hai pháön tæí coï
häù caím cuía maûch cuîng näúi chung vaìo mäüt nuït nhæ hçnh (h.3-12)
Z2
m ZM
∧
. I2
1 . I1
2 . I2
2
3
Z1
Z2
1
. I3
±ZM
Z1
. I1
ZMm
M
h.3-13
3
h.3-12
. I3
±
=
. U
. ZI 1
1
. IZ M
2
13
Ta coï aïp giæîa caïc cæûc :
±
=
. U
. ZI 2
2
. IZ M
1
23
Caïc dáúu phêa trãn khi caïc cuìng tãn näúi vaìo nuït, caïc dáúu phêa dæåïi khi caïc cæûc khaïc tãn näúi vaìo nuït (thæï tæû xãúp âàût cuía caïc dáúu naìy seî âæåüc giæî trong táút caí caïc biãøu thæïc tiãúp
. I
. I
. I
0
. I
khæí doìng
trong phæång trçnh thæï nháút vaì khæí
sau). Tæì phæång trçnh
=−+ 2
3
1
2
. I
trong phæång trçnh thæï hai ta âæåüc :
doìng
=
. U
. ± IZ)Z
. Z(I 1
1
13
M
M
3
m
=
. U
. ± IZ)Z
(3-22)
. Z(I 2
2
23
M
M
3
m
=
−
. U
. Z(I 1
1
12
)Z M
. Z(I 2
2
)Z M
m
m
1 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
vaìo caïc täøng tråí Z
Ta dáùn ra âæåüc så âäö nghiãûm âuïng 3 phæång trçnh thç noï laì så âäö âàóng trë khäng coï häù 1 vaì Z2, caím cáön tçm. Váûy âãø loaûi træì liãn hãû häù caím phaíi thãm
MZm
näúi vaìo cæûc 3.
ngoaìi ra coìn näúi vaìo nuït chung hai cuäün dáy täøng tråí
MZ±
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang
58
Vê duû : Xaïc âënh täøng tråí âáöu vaìo
cuía så âäö maûch hçnh (h.3-14).
Z = v
. U . I
Biãút x1=ωL1= 20Ω, x2=ωL2= 10Ω, xM=ωM = 10Ω, x3=1/ωC3 = 20Ω, R3= 10Ω, Z4 = 10 + j10. Dáùn ra så âäö âàóng trë khäng häù caím nhæ hçnh (h.3-15)
L1-M
L2-M
M
. I
. I
∗
∗
L1
L2
M
R3
R4
R4
. U
. U
R3
C3
h.3-14
C3
h.3-15
=
−
=
+
−
Z
x(j
x
Z),
x(j
R
x(j
Ta coï :
2
M
1
1
3
M
)x C
=
+
Z
Z
Nãn täøng tråí âáöu vaìo :
thay säú ta âæåüc Zv = 10 + j10 (Ω)
1
v
− x 2 M Z(Z 3 + Z
2 Z
= Z), 3 + )Z 4 + Z
3
2
4
Âäö thë Täpä cuía maûch âiãûn coï doìng âiãöu hoìa :
Ta âaî biãút caïch biãøu diãùn bàòng âäö thë vectå, aính phæïc, qua âoï tháúy roî sæû phán bäú biãn âäü, goïc pha cuía doìng, aïp. Roî raìng caïc phæång phaïp naìy chè biãøu diãùn âæåüc traûng thaïi, khäng chè ra âæåüc cáúu truïc. Âäö thë biãøu diãùn âäöng thåìi traûng thaïi vaì cáúu truïc cuía maûch goüi laì âäö thë Täpä. Noï laì âäö thë vectå caïc aính phæïc âiãûn thãú ϕa, ϕb, ... cuía caïc âènh trãn så âäö maûch (âiãøm nuït cuîng nhæ âènh näúi giæîa hai pháön tæí så âäö)
Caïch veî âäö thë Täpä nhæ sau : Choün mäüt âènh laìm mäúc, bàòng nhæîng phæång phaïp âaî biãút, tênh ra sæû phán bäú thãú caïc âènh trãn så âäö räöi veî tæì âènh mäúc. Vê duû : Veî âäö thë Täpä cho maûch âiãûn hçnh (h.3-16).
b
a
. E1
. E2
c
C3
b
0
d
a
L2
c
d
g
R1
R3
R2
g
0 h.3-16
h.3-17
, veî âæåüc caïc vectå doìng
phaïp doìng nhaïnh tênh âæåüc caïc doìng âiãûn
Choün âènh 0 laìm mäúc. Qua mäüt pháön tæí âaïnh dáúu 1 âènh. Giaí sæí bàòng phæång . . . I,I,I 1 2
. . . I,I,I 2 1
3
3
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaïo trçnh Cåí såí Kyî thuáût âiãûn I Trang 59
.
.
. I
. I
. U,0
0
. Âäö thë Täpä âæåüc veî nhæ hçnh (h.3-17).
,
3
1
. =ϕ 0
a
a
a
. vaì =+ I 2 . . IR=ϕ
. I
. −ϕ=ϕ−ϕ= 0 . I
truìng phæång våïi
, coï trë säú R
ta
3.I3, láúy âoaûn R3.I3 trãn phæång doìng
3
3
a
3
3
nãn
. xIj− C3
.
.
. I
aïp trãn tuû C coï trë säú I
goïc π/2, ta xaïc âënh âæåüc
3.xC vaì cháûm sau
âæåüc âiãøm a. Âiãøm b khaïc âiãøm a mäüt læåüng aïp bàòng aïp trãn tuû C laì . xIj−ϕ=ϕ C3 a
b
3
. I
âiãøm b. Tæång tæû ta xaïc thãú âiãøm d, láúy trãn phæång
1.I1 ta âæåüc âiãøm d, tæì d
1
. E
xaïc âënh b. Xaïc âënh âiãøm g láúy trãn phæång doìng
âoaûn I
qua
2.R2 âæåüc âiãøm g, tæì
1
2
âoaûn R . I . I
våïi trë säú I
2.xL âæåüc vë trê
2
g xaïc âënh âiãøm c nàòm trãn phæång vuäng goïc våïi doìng . E
xaïc âënh âæåüc âiãøm b phaíi truìng våïi caïc âiãøm b âaî xaïc
âiãøm c, tæì âiãøm c qua nguäön
2
âënh qua caïc âæåìng khaïc trãn.
Váûy âäö thë Täpä cho biãút ngoaìi thäng tin vãö traûng thaïi nhæ biãn âäü, goïc pha coìn cho biãút cáúu truïc cuía maûch âiãûn : coï bao nhiãu nhaïnh, bao nhiãu âènh, bao nhiãu pháön tæí, bao nhiãu voìng. Ngoaìi ra tæì thãú phæïc cuía caïc âiãøm trãn så âäö âæåüc biãøu diãùn båíi mäüt vectå trãn màût phàóng phæïc ta coï thãø xaïc âënh aïp giæîa hai âiãøm báút kyì cuía maûch seî bàòng hiãûu 2 vectå thãú phæïc. Âãø tçm hiãûu âoï chè cáön veî vectå näúi hai âáöu cuía hai vectå thãú phæïc 2 âiãøm tæång æïng, chiãöu cuía vectå hiãûu hæåïng vãö âáöu cuía vectå bë træì.
Vê duû : Veî âäö thë Täpä cuía maûch âiãûn nhæ hçnh veî sau :
ϕ5
R3.I
5
6
1
4
L
2
3
R1
R2
. E
C
. E
ϕ2
ϕ3
ϕ4
R3
6
5
. I.R1 . jxLI
. I.R2
, thç :
06
.
Choün thãú âènh 6 laìm mäúc . . +ϕ=ϕ
. . −ϕ=ϕ
=
−
. . +ϕ=ϕ
. . +ϕ=ϕ
. = ,IRIR
. =ϕ . . IRI
jx
. ,I
jx
jx
. I
4
5
3
5
6
3
C
3
4
3
. ,IR 2
2
3
C
L
.
.
.
. . +ϕ=ϕ
. = U,EIR
1
2
1
. ϕ−ϕ= 2
4
24
Trãn âäö thë Täpä chiãöu vectå aïp tæì 4 âãún 2 ngæåüc chiãöu våïi chiãöu dæång cuía aïp trãn så âäö (tæì âiãøm 2 âãún âiãøm 4) vç âoï laì quy tàõc træì vectå, vectå hiãûu cuía hai vectå luän hæåïng vãö vectå bë træì.
Træåìng Âaûi Hoüc Baïch Khoa - Khoa Âiãûn - Bäü män Thiãút bë âiãûn