intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Toán học: Phân hoạch đơn vị trên không gian Paracompact

Chia sẻ: Lavie Lavie | Ngày: | Loại File: PDF | Số trang:99

65
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn Thạc sĩ Toán học: Phân hoạch đơn vị trên không gian Paracompact dưới đây tập trung tìm hiểu về phân hoạch đơn vị, đồng liên tục - đồng liên tục nghiêm ngặt, thác triển phân hoạch đơn vị, tích phân và đạo hàm của phân hoạch đơn vị và một số nội dung khác.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Toán học: Phân hoạch đơn vị trên không gian Paracompact

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH ---------------------------------------- Phan Thị Ngọc Hưng PHÂN HOẠCH ĐƠN VỊ TRÊN KHÔNG GIAN PARACOMPACT LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh – 2008
  2. 2 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH ---------------------------------------- Phan Thị Ngọc Hưng PHÂN HOẠCH ĐƠN VỊ TRÊN KHÔNG GIAN PARACOMPACT Chuyên ngành: Hình học và Tôpô Mã số: 60 46 10 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN HÀ THANH Thành phố Hồ Chí Minh – 2008
  3. 3 LỜI CÁM ƠN Luận văn được hoàn thành dưới sự hướng dẫn khoa học của Tiến sĩ Nguyễn Hà Thanh. Tác giả xin bày tỏ lòng biết ơn sâu sắc đến thầy - người đã từng bước hướng dẫn tác giả phương pháp nghiên cứu đề tài cùng những kinh nghiệm thực hiện đề tài, cung cấp nhiều tài liệu và truyền đạt những kiến thức quí báu trong suốt quá trình thực hiện luận văn. Chân thành cám ơn quý thầy trong tổ Hình học, khoa Toán – Tin trường Đại học Sư Phạm Thành phố Hồ Chí Minh đã giúp tác giả nâng cao trình độ chuyên môn và phương pháp làm việc hiệu quả trong suốt quá trình học cao học. Chân thành cám ơn quý thầy cô phòng Khoa học Công nghệ và Sau đại học đã tạo điều kiện thuận lợi cho tác giả thực hiện luận văn này. Trong quá trình thực hiện luận văn, tác giả đã vài lần liên lạc với các nhà toán học nước ngoài, đặc biệt là giáo sư Jerzy Dydak đã tận tình giải đáp các vấn đề liên quan. Xin chân thành cám ơn giáo sư. Chân thành cám ơn Ban Giám Hiệu cùng các đồng nghiệp trường THPT Dân lập An Đông đã tạo điều kiện thuận lợi cho tác giả trong suốt quá trình học cao học. Sau cùng chân thành cám ơn các bạn cùng lớp với những trao đổi góp ý và động viên tác giả trong suốt quá trình thực hiện luận văn. TP. HCM tháng 8 năm 2008 Tác giả Phan Thị Ngọc Hưng
  4. 4 MỤC LỤC Trang Trang phụ bìa ............................................................................................... 2 Lời cám ơn .................................................................................................. 3 Mục lục ........................................................................................................ 4 MỞ ĐẦU ..................................................................................................... 9 Chương 1: KIẾN THỨC CHUẨN BỊ ..................................................... 12 1.1. Không gian tôpô .............................................................................. 12 1.1.1. Định nghĩa không gian tôpô................................................... 12 1.1.2. Lân cận .................................................................................. 12 1.1.3. Cơ sở ..................................................................................... 13 1.1.4. Cơ sở lân cận ......................................................................... 13 1.1.5. Điểm tụ (hay điểm giới hạn) .................................................. 13 1.1.6. Phần trong, bao đóng, tập trù mật .......................................... 13 1.1.7. Định nghĩa không gian khả li ................................................. 14 1.1.8. Các tiên đề đếm được ............................................................ 14 1.2. Ánh xạ liên tục ................................................................................ 14 1.3. Ánh xạ mở, ánh xạ đóng, phép đồng phôi ....................................... 15 1.4. Không gian con ............................................................................... 16 1.4.1. Định nghĩa tôpô cảm sinh, không gian con ............................ 16 1.4.2. Định lý (Điều kiện để một tập mở, đóng trong không gian con) ....................................................................................... 16 1.4.3. Hệ quả ................................................................................... 17 1.4.4. Định lý (Điều kiện để một tập mở, đóng trong không gian con) ....................................................................................... 17 1.5. Không gian thương.......................................................................... 17 1.6. Các tiên đề tách ............................................................................... 18
  5. 5 1.6.1. Định nghĩa các Ti – không gian.............................................. 18 1.6.2. Định lý .................................................................................. 19 1.7. Không gian chuẩn tắc ...................................................................... 19 1.7.1. Bổ đề Urysohn ....................................................................... 19 1.7.2. Định lý Tietze – Urysohn ...................................................... 19 1.7.3. Hệ quả ................................................................................... 19 1.7.4. Định lý (Điều kiện để một không gian là chuẩn tắc) .............. 20 1.7.5. Hệ quả ................................................................................... 20 1.8. Không gian mêtric hóa .................................................................... 20 1.8.1. Định nghĩa tôpô sinh bởi mêtric............................................ 20 1.8.2. Định nghĩa không gian mêtric hóa ....................................... 20 1.8.3. Định lý ................................................................................ 20 1.8.4. Các kết quả ........................................................................... 21 1.9. Hữu hạn địa phương ........................................................................ 21 1.9.1. Định nghĩa hữu hạn địa phương............................................ 21 1.9.2. Bổ đề .................................................................................... 21 1.9.3. Định nghĩa rời rạc (rời rạc địa phương) ................................ 21 1.9.4. Định nghĩa hữu hạn σ-địa phương (hữu hạn địa phương đếm được) .......................................................................... 22 1.9.5. Định nghĩa rời rạc σ-địa phương (σ-rời rạc, rời rạc địa phương đếm được) ............................................................. 22 1.9.6. Định nghĩa làm mịn, làm mịn mở, làm mịn đóng.................. 22 1.9.7. Bổ đề .................................................................................... 23 1.10. Định lý mêtric hóa Nagata – Smirnov ........................................... 23 1.10.1. Tập hợp dạng Gδ ................................................................ 23 1.10.2. Tập hợp dạng Fσ ................................................................ 24 1.10.3. Định lý mêtric hóa Nagata – Smirnov ................................ 24
  6. 6 1.11. Không gian compact ...................................................................... 24 1.11.1. Định nghĩa phủ, phủ mở, phủ hữu hạn ................................ 24 1.11.2. Định nghĩa phủ con, phủ con hữu hạn................................. 24 1.11.3. Định nghĩa không gian compact ......................................... 25 1.11.4. Định lý................................................................................ 25 1.11.5. compact hóa........................................................................ 26 1.12. Không gian paracompact ............................................................... 26 1.12.1. Định nghĩa không gian paracompact ................................... 27 1.12.2. Định lý................................................................................ 27 1.12.3. Hệ quả ................................................................................ 27 1.12.4. Định lý ............................................................................... 27 1.12.5. Định nghĩa giá của ánh xạ (support f) ................................. 27 1.13. Không gian phụ hợp ...................................................................... 27 Chương 2: PHÂN HOẠCH ĐƠN VỊ....................................................... 29 2.1. Phân hoạch đơn vị ........................................................................... 29 2.1.1. Định nghĩa tổng ..................................................................... 29 2.1.2. Định nghĩa các loại phân hoạch ............................................. 29 2.1.3. Định nghĩa phân hoạch U-small ............................................ 30 2.1.4. Định nghĩa không gian chuẩn tắc ........................................... 30 2.1.5. Định lý thác triển Tietze trên không gian chuẩn tắc ............... 31 2.1.6. Định nghĩa không gian paracompact ...................................... 31 2.1.7. Hệ quả ................................................................................... 31 2.1.8. Mệnh đề................................................................................. 32 2.1.9. Hệ quả ................................................................................... 34 2.2. Đồng liên tục - Đồng liên tục nghiêm ngặt ...................................... 35 2.2.1. Định nghĩa đồng liên tục nghiêm ngặt ................................... 35
  7. 7 2.2.2. Định nghĩa đồng liên tục........................................................ 35 2.2.3. Mệnh đề................................................................................. 36 2.2.4. Mệnh đề................................................................................. 38 2.2.5. Mệnh đề................................................................................. 40 2.2.6. Định nghĩa phân hoạch xấp xĩ ............................................... 42 2.2.7. Hệ quả ................................................................................... 43 2.2.8. Mệnh đề................................................................................. 44 2.2.9. Bổ đề ..................................................................................... 46 2.2.10. Định lý về sự tồn tại phân hoạch đơn vị U-small .................. 47 2.2.11. Định nghĩa closure-preserving ............................................. 47 2.3. Thác triển phân hoạch đơn vị .......................................................... 47 2.3.1. Mệnh đề ................................................................................ 48 2.3.2. Mệnh đề................................................................................. 49 2.3.3. Định lý ................................................................................. 51 2.3.4. Bổ đề .................................................................................... 52 2.3.5. Bổ đề .................................................................................... 53 2.3.6. Bổ đề .................................................................................... 55 2.3.7. Bổ đề .................................................................................... 56 2.3.8. Bổ đề .................................................................................... 58 2.3.9. Định lý (Thác triển phân hoạch đơn vị trên paracompact) ..... 59 2.4. Tích phân và đạo hàm của phân hoạch đơn vị ................................. 60 2.5. Bậc và chiều .................................................................................... 61 2.5.1. Định nghĩa bậc của phủ ......................................................... 61 2.5.2. Định nghĩa bậc của phân hoạch đơn vị .................................. 61 2.5.3. Định nghĩa chiều của không gian ........................................... 62 2.5.4. Bổ đề ..................................................................................... 62 2.5.5. Định nghĩa chiều của không gian paracompact ...................... 64
  8. 8 2.5.6. Hệ quả ................................................................................... 64 Chương 3: ỨNG DỤNG PHÂN HOẠCH ĐƠN VỊ VÀO TÔPÔ ........... 66 3.1. Ứng dụng phân hoạch đơn vị trên không gian paracompact ............ 66 3.1.1. Định lý thác triển Tietze ........................................................ 66 3.1.2. Bổ đề ..................................................................................... 68 3.1.3. Định lý A. H. Stone ............................................................... 69 3.1.4. Bổ đề ..................................................................................... 70 3.1.5. Định lý Tamano ..................................................................... 70 3.1.6. Chú ý (Điều kiện để paracompact đếm được là chuẩn tắc)..... 72 3.1.7. Định lý (Điều kiện đủ trên không gian paracompact đếm được) ............................................................................. 73 3.1.8. Định lý thay thế phân hoạch đơn vị ....................................... 75 3.1.9. Hệ quả (Định lý Michael) ...................................................... 80 3.1.10. Định lý mêtric hóa ............................................................... 81 3.1.11. Định lý mêtric hóa Nagata – Smirnov (Điều kiện cần)......... 84 3.2. Chiều và phân hoạch đơn vị ............................................................ 86 3.2.1. Định lý (Tổng quát hóa của định lý thác triển Tietze) ............ 86 3.2.2. Mệnh đề (Chiều của không gian phụ hợp) ............................. 88 3.2.3. Định lý (Chiều của không gian paracompact) ........................ 89 3.2.4. Mệnh đề (Sự thác triển xấp xĩ)............................................... 91 3.2.5. Hệ quả ................................................................................... 93 3.2.6. Định lý .................................................................................. 93 KẾT LUẬN ............................................................................................... 95 TÀI LIỆU THAM KHẢO ........................................................................ 98
  9. 9 MỞ ĐẦU 1. Lý do chọn đề tài Sự bùng nổ của nghiên cứu tôpô trong thời gian gần đây buộc chúng ta phải xem xét lại các vấn đề cơ bản và xác định chủ đề nào nên có trong nghiên cứu tôpô. Các nhà toán học tin rằng cơ sở để nghiên cứu một không gian tôpô là tính chuẩn tắc, compact, paracompact và định lý thác triển Tietze. Như chúng ta đã biết, các nhà tôpô thuần túy nghiên cứu các không gian thông qua các phủ mở. Trong khi đó, các nhà tôpô hình học lại dùng các hàm liên tục để nghiên cứu các không gian. Chính vì điều này, các nhà toán học: J. Dydak, N. Feldman, J.Segal, R. Engelking, I. M. James, A. T. Lundell, S. Weingram, . . . , nổi bật là Dydak đã nảy ra ý tưởng hợp nhất hai cách nghiên cứu này. Họ dùng phân hoạch đơn vị để giải quyết vấn đề và đã thành công. Chúng ta cũng đã biết, phân hoạch đơn vị là một trong các công cụ cơ bản của giải tích, nó cũng thường được sử dụng trong lý thuyết đồng luân. Nhưng theo sự trình bày của tôpô chính thống thì phân hoạch đơn vị chỉ tồn tại phụ thuộc vào phủ cho trước. A. T. Lundell và S. Weingram cũng đã có những cố gắng áp dụng phân hoạch đơn vị vào tôpô của các CW phức nhưng chỉ dừng lại ở phân hoạch đơn vị hữu hạn địa phương. I. M. James cũng chỉ thảo luận được phân hoạch đơn vị hữu hạn điểm ở tôpô tổng quát và lý thuyết đồng luân. Vì vậy, các ứng dụng gặp khó khăn khi dùng phương pháp đại số để xây dựng phân hoạch đơn vị hữu hạn địa phương. Ngay cả phân hoạch đơn vị tùy ý theo dạng định sẵn cũng gặp lắm phiền phức để tránh tất cả các trở ngại.
  10. 10 Sự ra đời của khái niệm “Phân hoạch của các hàm đồng liên tục” là một hướng mới để tận dụng tất cả các ưu điểm của các phép tính vi tích phân và phương pháp đại số để nghiên cứu phân hoạch đơn vị. Khái niệm “Paracompact” ra đời trong những năm gần đây. Nó là một tổng quát hóa hữu ích nhất của không gian compact. Nó đặc biệt giúp ích cho các ứng dụng trong tôpô và hình học vi phân, điển hình là định lý mêtric hóa. Một trong những tính chất hữu ích nhất mà không gian paracompact sở hữu đó là sự tồn tại của phân hoạch đơn vị. Vì những lí do đó, chúng tôi tiếp tục tìm hiểu về phân hoạch đơn vị đặc biệt là phân hoạch đơn vị phụ thuộc vào phủ, phân hoạch đồng liên tục, tính đồng liên tục, thác triển phân hoạch đơn vị, bậc của phân hoạch đơn vị. Trên cơ sở đó, chúng tôi tìm hiểu và áp dụng chúng để nghiên cứu tôpô và hình học, đặc biệt là nghiên cứu về: “Phân hoạch đơn vị trên không gian paracompact ”. 2. Mục đích Dùng phân hoạch đơn vị phụ thuộc phủ để chứng minh các kết quả trên không gian paracomapact một cách ngắn gọn và đơn giản hơn. 3. Đối tượng và nội dung nghiên cứu Không gian paracompact. 4. Ý nghĩa khoa học thực tiễn Dùng phân hoạch đơn vị phụ thuộc phủ làm giảm đi một số điều kiện đối với các kết quả trên không gian paracompact giúp cho các phát biểu trên không gian paracompact trở nên đơn giản và ngắn gọn hơn.
  11. 11 5. Cấu trúc luận văn Luận văn gồm ba chương. Chương 1: Các kiến thức chuẩn bị. Trình bày các kiến thức về tôpô đại cương có liên quan đến đề tài nghiên cứu. Chương 2: Phân hoạch đơn vị. Ở chương này trình bày: - Phân hoạch đơn vị, đồng liên tục, đồng liên tục nghiêm ngặt cùng các tính chất kèm các chứng minh chi tiết. - Thác triển phân hoạch đơn vị. - Tích phân và đạo hàm của phân hoạch đơn vị. - Bậc phân hoạch đơn vị và chiều. Các kết quả khác liên quan đến không gian chuẩn tắc luận văn chỉ trình bày chứ không chứng minh. Chương 3: Ứng dụng phân hoạch đơn vị vào tôpô. Cụ thể: - Dùng phân hoạch đơn vị chứng minh một số kết quả trên không gian paracompact: Định lý thác triển Tietze, định lý A. H. Stone, định lý Tamano, định lý mêtric hóa Nagata – smirnov (điều kiện cần). - Trình bày một số áp dụng về lý thuyết chiều.
  12. 12 Chương 1: KIẾN THỨC CHUẨN BỊ Trong chương này luận văn trình bày lại các kiến thức tôpô chính thống có liên quan đến các chương sau. Ở đây, hầu hết các định lý, các hệ quả, các bổ đề và các kết quả chỉ phát biểu chứ không chứng minh. Chúng được dùng làm cơ sở lý thuyết phục vụ đề tài. 1.1. Không gian tôpô 1.1.1. Định nghĩa không gian tôpô: Cho tập X. Họ τ các tập con của X được gọi là tôpô trên X nếu thỏa các điều kiện sau: τ1) X, ∅ thuộc τ, τ2) Hợp của tùy ý các tập thuộc τ là thuộc τ, τ3) Giao của hữu hạn các tập thuộc τ là thuộc τ. Tập X cùng với một tôpô trên X được gọi là không gian tôpô. Viết là (X, τ) hay X nếu không cần chỉ rõ τ là tôpô trên X. Các phần tử của không gian thường gọi là các điểm. Cho (X, τ) là không gian tôpô. Tập G∈τ được gọi là tập mở của X. Tập con F của X gọi là tập đóng nếu X \ F mở. Từ định nghĩa suy ra: a) ∅, X là tập đóng, b) Giao của tùy ý các tập đóng là tập đóng, c) Hợp của hữu hạn các tập đóng là tập đóng. 1.1.2. Lân cận:
  13. 13 Cho (X, τ) là không gian tôpô và x∈X. Tập V ⊂ X được gọi là một lân cận của x nếu tồn tại tập mở G sao cho x ∈ G ⊂ V. Nếu lân cận V của x là tập mở thì V gọi là lân cận mở của x. Nhận xét: - Mọi lân cận của X đều chứa một lân cận mở. - Tập G là mở nếu và chỉ nếu G là lân cận của mọi điểm thuộc nó. 1.1.3. Cơ sở: Cho (X, τ) là không gian tôpô. Một họ con β của τ gọi là một cơ sở của τ nếu: ∀G∈τ, ∀x∈G, ∃V∈β : x∈V ⊂ G. 1.1.4. Cơ sở lân cận: Một họ Ux các lân cận của x gọi là một cơ sở lân cận của x nếu: Mọi lân cận V của x đều tồn tại lân cận U∈Ux sao cho U ⊂ V. 1.1.5. Điểm tụ (hay điểm giới hạn): Cho A là một tập con của không gian tôpô X và x∈X. Nếu mọi lân cận V của x ta đều có V ∩ (A \ {x}) ≠ ∅ thì x được gọi là điểm tụ (hay điểm giới hạn) của tập A. 1.1.6. Phần trong, bao đóng, trù mật: Cho X là không gian tôpô, tập A ⊂ X. - Ta gọi phần trong của A là hợp của tất cả các tập mở được chứa trong A, ký hiệu A0. - Ta gọi bao đóng của A là giao của tất cả các tập đóng chứa A, ký hiệu Ā hay cl(A). - Tập con A được gọi là trù mật (hay trù mật khắp nơi ) trong X nếu Ā = X.
  14. 14 Từ định nghĩa suy ra: i) A0 là tập mở lớn nhất chứa trong A. A ⊂ B ⇒ A0 ⊂ B0. A mở ⇔ A = A0. ii) A ⊂ X thì luôn luôn có ít nhất một tập đóng chứa A. Ā là tập đóng nhỏ nhất chứa A. A = A. A ∪ B = A ∪ B. A ⊂ B ⇒ A ⊂ B. A đóng ⇔ A = Ā . 1.1.7. Định nghĩa không gian khả li: Không gian tôpô X được gọi là khả li nếu trong X tồn tập một tập con hữu hạn hoặc đếm được trù mật. 1.1.8. Các tiên đề đếm được 1.1.8.1. Tiên đề đếm được thứ 2: Không gian tôpô được gọi là thỏa mãn tiên đề đếm được thứ hai nếu nó có một cơ sở đếm được. 1.1.8.2. Tiên đề đếm được thứ 1: Không gian tôpô được gọi là thỏa mãn tiên đề đếm được thứ nhất nếu mọi điểm x∈X đều có một cơ sở lân cận đếm được. 1.1.8.3. Định lý: Không gian thỏa mãn tiên đề đếm được thứ hai thì thỏa mãn tiên đề đếm được thứ nhất. 1.2. Ánh xạ liên tục 1.2.1. Định nghĩa:
  15. 15 Cho X và Y là các không gian tôpô. Ánh xạ f : X → Y được gọi là liên tục tại x∈X nếu mọi lân cận V của f(x) trong Y đều tồn tại lân cận U của x trong X sao cho f(U) ⊂ V. Nói cách khác: Ánh xạ f : X → Y được gọi là liên tục tại x∈X nếu mọi V là lân cận của f(x) trong Y thì f -1(V) là lân cận của x trong X. Ánh xạ gọi là liên tục trên X nếu nó liên tục tại mọi x∈X. 1.2.2. Định lý: Với mọi ánh xạ f : X → Y, các điều kiện sau là tương đương a) f liên tục. b) f -1(G) mở trong X với mọi tập G mở trong Y. c) f -1(G) mở trong X với mọi G thuộc một cơ sở của Y. d) f -1(G) mở trong X với mọi G thuộc một tiền cơ sở của Y. e) f -1(F) đóng trong X với mọi tập F đóng trong Y. ( ) f) f A ⊂ f ( A) với mọi tập con A của X. g) f ( B) ⊃ −1 f −1 ( B ) với mọi tập con B của Y. 1.2.3. Hệ quả: Cho f : X → Y và g : Y → Z là các ánh xạ liên tục. Thì a) g° f liên tục.   b) ∪ f −1(Vα ) = f −1  ∪Vα  , α α    ∩ f −1(Vα ) = f −1  ∩Vα  , Vα là tập mở trong Y. α α  1.3. Ánh xạ mở, ánh xạ đóng, phép đồng phôi 1.3.1. Định nghĩa phép đồng phôi:
  16. 16 Cho X, Y là các không gian tôpô. Ánh xạ f : X → Y được gọi là một phép đồng phôi hay ánh xạ tôpô nếu f là song ánh, liên tục và f -1 liên tục. Hai không gian được gọi là đồng phôi nhau nếu tồn tại một phép đồng phôi từ không gian này vào không gian kia. Hai không gian đồng phôi còn được gọi là hai không gian tương đương tôpô. 1.3.2. Định nghĩa ánh xạ mở, ánh xạ đóng: Cho X, Y là các không gian tôpô. Ánh xạ f : X → Y được gọi là mở (hay ánh xạ mở) nếu mọi tập G mở trong X thì f(G) mở trong Y. Ánh xạ f : X → Y được gọi là đóng (hay ánh xạ đóng) nếu mọi tập F đóng trong X thì f(F) đóng trong Y. 1.3.3. Định lý: Cho X, Y là các không gian tôpô và song ánh f : X → Y. f là phép đồng phôi khi và chỉ khi f là ánh xạ liên tục và mở (hoặc đóng). 1.4. Không gian con 1.4.1. Định nghĩa tôpô cảm sinh, không gian con: Cho không gian tôpô (X, τ) và tập Y ⊂ X. Khi đó: - Họ τY = {V ⊂ Y  V = Y ∩ G với G∈τ} là một tôpô trên A. - τY gọi là tôpô cảm sinh bởi tôpô τ trên X. - Không gian (Y, τY) gọi là không gian con của không gian X. - Mỗi phần tử của τY gọi là tập hợp mở trong Y. 1.4.2. Định lý: Cho không gian tôpô (X, τ) và (Y, τY) là không gian con của nó. Khi đó
  17. 17 a) Tập A ⊂ Y mở trong Y khi và chỉ khi A = Y ∩ G với G là tập con mở trong X. b) Tập B ⊂ Y đóng trong Y khi và chỉ khi B = Y ∩ F với F là tập con đóng trong X. 1.4.3. Hệ quả: Cho Y là không gian con của không gian tôpô X và y∈Y. Nếu V là lân cận của y trong Y thì tồn tại lân cận U của y trong X sao cho V = U ∩ Y. 1.4.4. Định lý: Cho Y là không gian con của không gian tôpô X. Một tập hợp mở (đóng) tùy ý trong Y là mở (đóng) tùy ý trong X khi và chỉ khi Y là tập mở (đóng) trong X. 1.5. Không gian thương 1.5.1. Định nghĩa: Cho không gian tôpô (X, τ) và một quan hệ tương đương R trên X. Ký hiệu X là tập thương của X theo quan hệ tương đương R. Ký hiệu R[x] là R lớp tương đương chứa x∈X. Ánh xạ π : X → X gọi là phép chiếu chính tắc. R x  π ( x) = R[ x] { −1 } Ta có π là toàn ánh. Trên R , họ σ = V ⊂ R π (V ) ∈τ là một tôpô. X X ( X R , σ ) gọi là không gian thương của không gian X theo quan hệ tương R. Khi đó π liên tục. Như vậy: phép chiếu chính tắc là toàn ánh và liên tục. 1.5.2. Định lý:
  18. 18 Cho phép chiếu chính tắc π : X → X R và ánh xạ f : X R → Y . Ánh xạ f liên tục khi và chỉ khi f °π liên tục. 1.6. Các tiên đề tách 1.6.1. Định nghĩa các Ti- không gian: Cho X là không gian tôpô. - X gọi là T0- không gian nếu hai điểm khác nhau bất kỳ x, y∈X có một lân cận của x không chứa y hoặc một lân cận của y không chứa x. - X gọi là T1- không gian nếu hai điểm khác nhau bất kỳ x, y∈X có một lân cận của x không chứa y và một lân cận của y không chứa x. - X gọi là T2- không gian hay không gian Hausdorff nếu hai điểm khác nhau bất kỳ x, y∈X tồn tại lân cận U của x và lân cận V của y sao cho: U ∩ V = ∅. - X gọi là T3- không gian hay không gian chính qui nếu X là T1- không gian và với mọi x∈X và mọi tập con đóng F của X không chứa x, tồn tại các tập con mở U, V sao cho x∈U, F ⊂ V và U ∩ V = ∅. - X gọi là T 1- không gian hay không gian hoàn toàn chính qui hay không 3 2 gian Tikhonov nếu X là T1- không gian và với mọi x∈X và mọi tập con đóng F của X không chứa x, tồn tại hàm liên tục f : X → [0,1] sao cho f(x) = 0 và f(y) = 1 với mọi y∈F. - X gọi là T4- không gian hay không gian chuẩn tắc nếu X là T1- không gian và hai tập con đóng bất kỳ không giao nhau A, B trong X, tồn tại các tập con mở U, V sao cho A ⊂ U, B ⊂ V và U ∩ V = ∅. Ta gọi T0 , T1 , T2 , T3 , T 1 , T4 là các tiên đề tách. 3 2 Ví dụ: Đường thẳng thực là T0- không gian, T1- không gian, không gian Hausdorff, không gian chính qui, không gian chuẩn tắc.
  19. 19 Nhận xét: Tj- không gian ⇒ Ti- không gian với j > i. 1.6.2. Định lý: Cho X là không gian tôpô. a) X là T1- không gian nếu và chỉ nếu mọi tập con chỉ gồm một điểm của X là tập đóng. b) X là không gian chính qui nếu và chỉ nếu X là T1- không gian và mọi x∈X, mọi lân cận V của x đều chứa một lân cận đóng của x. Tức là: X là không gian chính qui nếu và chỉ nếu X là T1- không gian và mọi x∈X, mọi lân cận V của x tồn tại lân cận U của x sao cho x ∈U ⊂ U ⊂ V . 1.7. Không gian chuẩn tắc: 1.7.1. Bổ đề Urysohn: Cho X là không gian chuẩn tắc, A và B là hai tập con đóng rời nhau trong X. Khi đó tồn tại hàm liên tục f : X → [0, 1] sao cho f(x) = 0, ∀x∈A và f(x) = 1, ∀x∈B. 1.7.2. Định lý Tietze-Urysohn: Cho X là không gian chuẩn tắc, A là tập con đóng của X. Khi đó mọi hàm liên tục f : A → [0, 1] đều tồn tại một hàm liên tục g : X → [a, b] sao cho gA = f. 1.7.3. Hệ quả: a) Cho f là hàm liên tục trên tập con đóng A của không gian chuẩn tắc X. Khi đó tồn tại hàm g liên tục trên X sao cho gA = f. b) Nếu X là không gian chuẩn tắc thì X hoàn toàn chính quy.
  20. 20 1.7.4. Định lý: Không gian tôpô X là không gian chuẩn tắc khi và chỉ khi T1- không gian và với mỗi tập con đóng F trong X, mỗi lân cận tùy ý của F có chứa một lân cận đóng của F. 1.7.5. Hệ quả: Mọi không gian chính qui thỏa mãn tiên đề đếm được thứ hai là không gian chuẩn tắc. 1.8. Không gian mêtric hóa 1.8.1. Định nghĩa tôpô sinh bởi mêtric: Cho không gian mêtric (X, d). Ta xác định trong (X, d) một tập hợp τ các tập con của X như sau: τ = {U ⊂ X | ∀x∈U, ∃r > 0 sao cho B(x, r) ⊂ U}. Thì τ là một tôpô trên X. Tôpô τ xác định như trên gọi là tôpô sinh ra bởi mêtric d trên X, các phần tử thuộc τ được gọi là các tập mở trong (X, d). 1.8.2. Định nghĩa không gian mêtric hóa: Không gian tôpô (X, τ) được gọi là không gian mêtric hóa (hay không gian mêtric hoá được) nếu trên X có một mêtric d sao cho tôpô sinh bởi mêtric d trùng với tôpô τ trên X. 1.8.3. Định lý: a) Mọi không gian mêtric hóa đều là không gian chuẩn tắc và thỏa tiên đề đếm được thứ nhất. b) Mọi không gian mêtric hóa thỏa tiên đề đếm được thứ hai khi và chỉ khi nó khả li.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
5=>2