Toán học: Bất đẳng thức
lượt xem 56
download
Miền chấp nhận được (feasible region) của một bài toán quy hoạch tuyến tính được xác định bởi một tập các bất đẳng thức Trong toán học, một bất đẳng thức (tiếng Anh:Inequality) là một phát biểu về quan hệ thứ tự giữa hai đối tượng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Toán học: Bất đẳng thức
- Bất đẳng thức Miền chấp nhận được (feasible region) của một bài toán quy hoạch tuyến tính được xác định bởi một tập các bất đẳng thức Trong toán học, một bất đẳng thức (tiếng Anh:Inequality) là một phát biểu về quan hệ thứ tự giữa hai đối tượng. (Xem thêm: đẳng thức) • Ký hiệu có nghĩa là a nhỏ hơn b và • Ký hiệu có nghĩa là a lớn hơn b. Những quan hệ nói trên được gọi là bất đẳng thức nghiêm ngặt; ngoài ra ta còn có • có nghĩa là a nhỏ hơn hoặc bằng b và • có nghĩa là a lớn hơn hoặc bằng b. Người ta còn dùng một ký hiệu khác để chỉ ra rằng một đại lượng lớn hơn rất nhiều so với một đại lượng khác. • Ký hiệu a >> b có nghĩa là a lớn hơn b rất nhiều.
- Các ký hiệu a, b ở hai vế của một bất đẳng thức có thể là các biểu thức của các biến. Sau đây ta chỉ xét các bất đẳng thức với các biến nhận giá trị trên tập số thực hoặc các tập con của nó. Nếu một bất đẳng thức đúng với mọi giá trị của tất cả các biến có mặt trong bất đẳng thức, thì bất đẳng thức này được gọi là bất đẳng thức tuyệt đối hay không điều kiện. Nếu một bất đẳng thức chỉ đúng với một số giá trị nào đó của các biến, với các giá trị khác thì nó bị đổi chiều hay không còn đúng nữa thì nó được goị là một bất đẳng thức có điều kiện. Một bất đẳng thức đúng vẫn còn đúng nếu cả hai vế của nó được thêm vào hoặc bớt đi cùng một giá trị, hay nếu cả hai vế của nó được nhân hay chia với cùng một số dương. Một bất đẳng thức sẽ bị đảo chiều nếu cả hai vế của nó được nhân hay chia bởi một số âm. Hai bài toán thường gặp trên các bất đẳng thức là 1. Chứng minh bất đẳng thức đúng với trị giá trị của các biến thuộc một tập hợp cho trước, đó là bài toán chứng minh bất đẳng thức. 2. Tìm tập các giá trị của các biến để bất đẳng thức đúng. Đó là bài toán giải bất phương trình. 3. Tìm giá trị lớn nhất,nhỏ nhất của một biểu thức một hay nhiều biến. Các tính chất Bất đẳng thức có các tính chất sau: Tính chất tam phân Tính chất tam phân phát biểu: • Với mọi số thực a và b, chỉ có một trong những quan hệ sau đây là đúng: o a
- o a=b o a>b Tính chất này suy ra từ tính sắp thứ tự đầy đủ của tập số thực. Tính chất bắc cầu Tính chất bắc cầu của bất đẳng thức được phát biểu như sau: • Với mọi số thực a, b,c: o Nếu a > b và b > c thì a > c o Nếu a < b và b < c thì a < c Tính đảo Quan hệ bất đẳng thức có thể đảo chiều như ảnh qua gương theo nghĩa như sau: • Với mọi số thực, a và b: o Nếu a > b thì b < a o Nếu a < b thì b > a Tính chất liên quan đến phép cộng và phép trừ Tính chất liên quan đến phép cộng và phép trừ được phát biểu như sau: Phép cộng và phép trừ với cùng một số thực bảo toàn quan hệ thứ tự trên tập số thực. Nghĩa là • Với mọi số thực a, b và c: o Nếu a > b thì a + c > b + c và a - c > b - c
- o Nếu a < b thì a + c < b + c và a - c < b - c Tính chất liên quan đến phép nhân và phép chia Tính chất liên quan đến phép nhân và phép chia được phát biểu như sau: Phép nhân (hoặc chia) với một số thực dương bảo toàn quan hệ thứ tự trên tập số thực, phép nhân (hoặc chía)với một số thực âm đảo ngược quan hệ thứ tự trên tập số thực. Cụ thể: • Với mọi số thực a, b và c: o Nếu c là một số dương và a > b thì a × c > b × c và a/c > b/c o Nếu c là một số dương và a < b thì a × c < b × c và a/c < b/c o Nếu c là một số âm và a > b thì a × c < b × c và a/c < b/c o Nếu c là một số âm và a < b thì a × c > b × c và a/c > b/c Áp dụng một hàm đơn điệu vào hai vế của một bất đẳng thức Từ định nghĩa của các hàm đơn điệu (tăng hoặc giảm) ta có thể đưa hai vế của một bất đẳng thức trở thành biến của một hàm đơn điệu tăng nghiêm ngặt mà bất đẳng thức kết quả vẫn đúng. Ngược lại nếu ta áp vào hai vế của một bất đẳng thức dạng hàm đơn điệu giảm nghiêm ngặt thì lúc ấy ta phải đảo chiều bất đẳng thức ban đầu để được bất đẳng thức đúng. Điều đó có nghĩa là: 1. Nếu có bất đẳng thức không nghiêm ngặt a ≤ b (hoặc a ≥b) và 1. f(x) là hàm đơn điệu tăng thì f(a) ≤ f(b) (hoặc f(a)≥f(b)) (không đảo chiều) 2. f(x) là hàm đơn điệu giảm thì f(a) ≥ f(b) (hoặc f(a)≤f(b))(đảo chiều)
- 2. Nếu có bất đẳng thức nghiêm ngặt a < b (hoặc a > b) và 1. f(x) là hàm đơn điệu tăng nghiêm ngặt thì f(a) < f(b) (hoặc f(a)>f(b)) (không đảo chiều) 2. f(x) là hàm đơn điệu giảm nghiêm ngặt thì f(a) > f(b) (hoặc f(a)
- • Bất đẳng thức Bunhia • Bất đẳng thức Azuma • Bất đẳng thức Bernoulli • Bất đằng thức Boole • Bất đẳng thức Cauchy-Schwarz • Bất đẳng thức cộng Chebyshev • Bất đẳng thức Chernoff • Bất đẳng thức Cramer-Rao • Bất đẳng thức Hoeffding • Bất đẳng thức Holder • Bất đẳng thức Jensen • Bất đẳng thức Markov • Bất đẳng thức Minkowski • Bất đẳng thức Nesbitt • Bất đẳng thức Pedoe • Bất đẳng thức tam giác • Bất đẳng thức trung bình cộng và trung bình nhân Mẹo nhỏ cho học sinh
- Các học sinh thường bị lẫn lộn giữa ký hiệu lớn hơn và nhỏ hơn, vì hai ký hiệu này chẳng qua là ảnh qua gương lẫn nhau. Một mẹo nhỏ giúp học sinh dễ nhớ là dấu bất đẳng thức trông giống như một con cá sấu đói đang muốn ăn một con lớn hơn, vì thế, cái mõm mở ra luôn hướng về số 8 trong cả hai bất đẳng thức 3 < 8 và 8 > 3. Cũng có một mẹo khác là, đại lượng lớn hơn chỉ tay về phía đại lượng nhỏ hơn và nói "ha...ha, tôi lớn hơn bạn".
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC
9 p | 1185 | 336
-
5 loại bất đẳng thức
11 p | 1112 | 321
-
Phương pháp hình học chứng minh bất đẳng thức
5 p | 806 | 308
-
Một số bất đẳng thức đại số và bài toán GTLN và GTNN của biểu thức đại số trong các đề thi cao đẳng - đại học
12 p | 595 | 142
-
Bất đẳng thức trung bình điều hòa
3 p | 448 | 100
-
Chuyên đề ôn thi: Bất đẳng thức
18 p | 267 | 94
-
Tuyển tập 300 bất đẳng thức hay từ các diễn đàn Toán học trên thế giới
58 p | 391 | 63
-
CÁCH CHỨNG MINH BẤT ĐẲNG THỨC
34 p | 293 | 51
-
Tài liệu tham khảo: Bất đẳng thức Cauchy
78 p | 223 | 43
-
Ứng dụng lượng giác giải bài toán bất đẳng thức hình học - Hoàng Minh Quân
8 p | 313 | 42
-
Bất đẳng thức trong tam giác
1 p | 295 | 37
-
Tuyển tập Toán bất đẳng thức
29 p | 106 | 25
-
Bài viết Toán học Bất đẳng thức & cực trị lượng giác - Nguyễn Minh Đức
13 p | 261 | 24
-
Sáng kiến kinh nghiệm: Rèn luyện kĩ năng vận dụng bất đẳng thức Bunhiacôpxki trong bồi dưỡng học sinh khá, giỏi THPT
20 p | 123 | 14
-
Đại số sơ cấp (Phần 4): Phép chứng minh bất đẳng thức trên một tập
31 p | 100 | 10
-
Sáng kiến kinh nghiệm: Phương pháp chứng minh Bất đẳng thức Cauchy (Côsi)
37 p | 46 | 5
-
Sáng kiến kinh nghiệm THPT: Khai thác bất đẳng thức Cauchy bồi dưỡng học sinh giỏi lớp 10
32 p | 37 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn