YOMEDIA
![](images/graphics/blank.gif)
ADSENSE
Tổng hợp công thức cực trị Điện Xoay chiều - Đặng Việt Hùng
2.868
lượt xem 706
download
lượt xem 706
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Tổng hợp các công thức cực trị điện xoay chiều gồm có đoạn mạch RLC có L thay đổi, đoạn mạch RLC có C thay đổi, bài toán cho w thay đổi, các công thức vuông pha. Hy vọng các bạn sẽ hài lòng khi tham khảo tài liệu này.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tổng hợp công thức cực trị Điện Xoay chiều - Đặng Việt Hùng
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 CÁC CÔNG TH C C C TR I N XOAY CHI U I. o n m ch RLC có L thay i: 1 * Khi L = 2 thì IMax ⇒ URmax; PMax còn ULCMin Lưu ý: L và C m c liên ti p nhau ωC R 2 + ZC 2 U R 2 + ZC 2 * Khi Z L = thì U LMax = và U LMax = U 2 + U R + U C ; U LMax − U CU LMax − U 2 = 0 2 2 2 2 ZC R 1 1 1 1 2 L1 L2 * V i L = L1 ho c L = L2 thì UL có cùng giá tr thì ULmax khi = ( + )⇒ L= Z L 2 Z L1 Z L2 L1 + L2 ZC + 4R 2 + ZC 2 2UR * Khi Z L = thì U RLMax = Lưu ý: R và L m c liên ti p nhau 2 4 R + ZC − ZC 2 2 II. o n m ch RLC có C thay i: 1 * Khi C = 2 thì IMax ⇒ URmax; PMax còn ULCMin Lưu ý: L và C m c liên ti p nhau ω L R2 + ZL2 U R2 + ZL 2 * Khi Z C = thì U CMax = và UCMax = U 2 + U R + U L ; UCMax − U LUCMax − U 2 = 0 2 2 2 2 ZL R 1 1 1 1 C + C2 * Khi C = C1 ho c C = C2 thì UC có cùng giá tr thì UCmax khi = ( + )⇒C = 1 Z C 2 Z C1 Z C2 2 ZL + 4R2 + ZL 2 2UR * Khi Z C = thì U RCMax = 2 4R 2 + Z L − Z L 2 Lưu ý: R và C m c liên ti p nhau Thay i f có hai giá tr f1 ≠ f 2 bi t f1 + f 2 = a III. Bài toán cho ω thay i. - Xác nh ω Pmax, Imax, URmax. o Khi thay i ω, các i lư ng L, C, R không thay i nên tương ng các i lư ng Pmax, Imax, 1 1 URmax khi x y ra c ng hư ng: ZL = ZC hay ω = ωL = ⇔ LCω 2 = 1 ⇒ ω . LC Cω - Xác nh ω UCmax. Tính UCmax ó. ZC .U U U U C = ZC .I = = = R 2 + ( Z L - ZC ) R 2 + ( Z L - ZC ) 2 2 2 1 R + ωL - 2 Z2C ωC o 1 ωC 2 2 U U U = = = ω4 L2 C2 + ω2 ( R 2 C 2 − 2LC ) + 1 x 2 L2 C 2 + x ( R 2 C2 − 2LC ) + 1 y 2LC − R 2 C2 1 L R 2 1 L R2 o UCmax khi ymin hay x = ωC = 2 2 2 = 2 − ⇒ ωC = − 2L C L C 2 L C 2 2LU và t ó ta tính ư c U Cmax = . R 4LC − R 2 C 2 1 L R2 2UL . => Khi ω = − thì UCMax = L C 2 R 4LC−RC2 2 - Xác nh ω ULmax. Tính ULmax ó. Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 ZL .U U U U L = ZL .I = = = R 2 + ( Z L - ZC ) R 2 + ( ZL - ZC ) 2 2 2 1 R + ωL -2 Z2 L ωC o ω2 L2 U U U = = = 1 1 R2 2 1 R2 2 y + 2 2 − +1 x2 2 2 + x 2 − +1 ω L C ω L LC 4 2 2 LC L LC 1 L2 C 2 2 R 2 L R2 1 1 o ULmax khi ymin hay x = = − 2 = C2 − ⇒ ωL = . ωL2 2 LC L C 2 C L R2 − C 2 2LU và t ó ta tính ư c U Lmax = . R 4LC − R 2 C 2 1 1 2U.L => Khi ω = thì ULMax = C L R 2 R 4LC − R2C2 − C 2 - Cho ω = ω1, ω = ω2 thì P như nhau. Tính ω Pmax. R.U 2 R.U 2 o 2 Khi ω = ω1: P 1 = R.I1 = 2 = 2 R + (ZL1 - ZC1 ) 2 1 R + ω1L − 2 ω1C R.U 2 R.U 2 o Khi ω = ω2: P 2 = R.I 2 = = R 2 + ( ZL 2 - ZC2 ) 2 2 2 1 R + ω2 L − 2 ω2 C o P như nhau khi: 1 1 1 1 1 1 P 1 = P 2 ⇔ ω1L − = − ω2 L ⇒ ( ω1 + ω2 ) L = + ⇒ ω1ω2 = ω1C ω2 C C ω1 ω2 LC o i u ki n P t giá tr c c i (c ng hư ng) khi: 1 ZC = ZL ⇒ ω2 = = ω1ω2 ⇒ ω = ω1ω2 LC => V i ω = ω1 ho c ω = ω2 thì I ho c P ho c cosφ ho c UR có cùng m t giá tr thì IMax ho c PMax ho c URMax 1 khi ω = ω1ω2 ⇒ ω1ω2 = , f = f1 f 2 LC 1 Nghĩa là :Có hai giá tr c a ω m ch có P, I, Z, cosφ, UR gi ng nhau thì ω1ω2 = ω m = 2 LC - Cho ω = ω1, ω = ω2 thì UC như nhau. Tính ω UCmax. U U o Khi ω = ω1: U C1 = ZC1 .I1 = = ω1 C2 R 2 + ( ω1 LC − 1) 2 2 1 2 2 ω1C R + ω1L − 2 ω1C U U o Khi ω = ω2: U C2 = ZC2 .I 2 = = ω2 C2 R 2 + ( ω2 LC − 1) 2 2 1 2 ω2 C R + ω2 L − 2 2 ω2 C o UC như nhau khi: Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 U C1 = U C2 ⇔ ω1 C 2 R 2 + ( ω1 LC − 1) = ω2 C 2 R 2 + ( ω2 LC − 1) 2 2 2 2 2 2 1 2 1 ⇒ C 2 R 2 ( ω1 − ω2 ) = LC ( ω2 − ω1 ) LC ( ω2 + ω1 ) − 2 ⇒ C2 R 2 = −2L2 C2 ( ω2 + ω1 ) − 2 2 2 2 2 LC 2 2 2 1 L R 2 ⇒ ( ω2 + ω1 ) = 2 − 1 2 2 2 L C 2 1 L R2 1 2 i u ki n UCmax khi: ω = 2 − = ( ω1 + ω2 ) 2 2 o C L C 2 2 - Cho ω = ω1, ω = ω2 thì UL như nhau. Tính ω ULmax. U U o Khi ω = ω1: U L1 = ZL1.I1 = = 2 2 1 1 R2 1 R + ω1L − 2 + 1- 2 ω1L ω1C ω1 L2 ω1 LC 2 U U o Khi ω = ω2: U L2 = ZL2 .I 2 = = 2 2 1 1 R2 1 R + ω2 L − 2 + 1- 2 ω2 L ω2 C ω2 L2 ω2 LC 2 o UL như nhau khi: 2 2 R2 1 R2 1 U L1 = U L2 ⇔ 2 2 + 1 − 2 = 2 2 + 1 − 2 ω1 L ω1 LC ω2 L ω2 LC R2 1 1 1 1 1 1 1 1 ⇒ 2 2 − 2= 2 − 2 2 − 2 + 2 L ω1 ω2 LC ω1 ω2 LC ω1 ω2 R2 2 1 1 1 1 1 1 R 2C2 L R2 ⇒ = 2 2 LC − 2 + 2 ⇒ 2 + 2 = LC − = C2 − L2 L C 2 ω1 ω2 2 ω1 ω2 2 C 2 1 2 L R2 1 1 1 o i u ki n ULmax khi: 2 = C − = 2 + 2 ωL C 2 2 ω1 ω2 - Cho ω = ω1 thì ULmax, ω = ω2 thì UCmax. Tính ω Pmax. 1 1 o ULmax khi ω1 = . C L R2 − C 2 1L R2 o UCmax khi ω2 = − LC 2 o i u ki n P t giá tr c c i (c ng hư ng) khi: 1 ZC = ZL ⇒ ω2 = = ω1ω2 ⇒ ω = ω1ω2 LC IV. Các công th c vuông pha 2 2 uL i 1 – o n m ch ch có L ; uL vuông pha v i i U + =1 I 0L 0 2 u u 2 − u1 2 v i U0L = I0ZL => L Z + i2 = I0 2 => Z L = 2 L i1 − i 2 2 2 2 2 uC i 2 – o n m ch ch có t C ; uC vuông pha v i i U + =1 I 0C 0 Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 2 u v i U0C = I0ZC => Z + i2 = I0 2 C u 2 − u1 2 => (ωCu C ) + i 2 = I 0 1 => Z C = => Z C = 2 2 2 ωC i1 − i 2 2 2 3- o n m ch có LC ; uLC vuông pha v i i 2 2 u LC i u 2 − u1 2 U +I =1 => Z LC = 2 i1 − i 2 2 0 LC 0 2 4 – o n m ch có R và L ; uR vuông pha v i uL 2 2 2 2 uL uR uL uR U + U = 1 ; U sin φ + U cos φ = 1 0L 0R 0 0 5 – o n m ch có R và C ; uR vuông pha v i uC 2 2 2 2 U0LC U0 uC uR uC uR U + U = 1 ; U sin φ + U cos φ = 1 0C 0 R 0 0 6 – o n m ch có RLC ; uR vuông pha v i uLC 2 2 2 2 u LC uR u i U + U = 1 ; LC U + =1 I 0 LC 0R 0 LC 0 ) ϕ 2 2 u LC u R U0R U sin φ + U cos φ = 1 => U02 = U0R2 + U0LC2 0 0 2 u v i U0LC = U0R tanϕ => LC + u 2 = U 0 R tan φ R 2 7 – T i u ki n có hi n tư ng c ng hư ng ω02LC = 1 Xét v i ω thay i ω0 LC L ω − ω0 2 2 1 ω2 ωL − ωL − ω ω− 0 7a : tan φ = ωC = ωC = => R = ω = h ng s R R R L tan φ 1 7b : ZL = ωL và Z C = ωC 2 Z ω ZL ω = > L = ω 2 LC = 2 => = UL ZC ω0 Z C ω0 => o n m ch có tính c m kháng ZL > ZC => ωL > ω0 URLC => o n m ch có tính dung kháng ZL < ZC => ωC < ω0 => khi c ng hư ng ZL = ZC => ω = ω0 7c : I1 = I2 < Imax => ω1ω2 = ω02 Nhân thêm hai v LC => ω1ω2LC = ω02LC = 1 ZL1 = ω1L và ZC2 = 1/ ω2C ZL1 = ZC2 và ZL2 = ZC1 )ϕRLC O )ϕRC UR 7d : Cosϕ1 = cosϕ2 => ω1 ω2LC = 1 thêm i u ki n L = CR2 R 1 cos φ1 = => cos 2 φ1 = 2 R + ( Z L1 − Z C1 ) 2 2 ω1 ω2 UC URC 1+ − ω ω1 2 8 – Khi L thay i ; i n áp hai u cu n c m thu n L => URC ⊥URLC => t G VT Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 ULmax tanϕRC. tanϕRLC = – 1 R + ZC 2 2 => Z L = => ZL2 = Z2 + ZCZL ZC U U2 + UC 2 => U LMAX = R 2 + Z C và U LMAX = R 2 R UC 2 2 2 2 => U Lmax = U + U R + U C LMAX = U + U C U LMAX => U 2 2 2 2 U UC Z ZC => U + U = 1 => Z + Z =1 LMAX LMAX L L 9 – Khi C thay i ; i n áp hai u t C => URL ⊥URLC => UCmax tanϕRL. tanϕRLC = – 1 R 2 + Z2 => Z C = L => ZC2 = Z2 + ZCZL ZL U U2 + U2 => U CMAX = R 2 + Z 2 và U CMAX = R L L R UL => U2 Cmax 2 2 = U +U R+U L 2 2 U UL => U 2 CMAX = U + U L U CMAX 2 => U + U =1 CMAX CMAX 2 Z ZL => Z + Z =1 C C 10 – Khi URL ⊥ URC U RL U RC => ZLZC = R2 => U R = => tanϕRL. tanϕRC = – 1 U2 + U2 RL RC 11 – i n áp c c i hai ut i n C khi ω thay i L 2 − R2 C R2 V i ωC = (1) => ω2 = ωC2 = ω02 – (2) => cách vi t ki u (2) m i d nh hơn (1) 2 L2 2L2 2 ZL ωC v i ZL = ωCL và ZC = 1/ ωCC => = ωC LC = 2 2 ZC ω0 2LU => t U CMAC = (3) => t (2) và (3) suy d ng công th c m i R 4LC − R 2 C 2 2 2 2 2 U U ZL Z ZL U C max = => U + Z = 1 => Z + Z = 1 => Z C = Z + Z L 2 2 2 Z 2 CMAX C C C 1− L Z C 2 2 U ωC 2 => 2tanϕRL.tanϕRLC = – 1 => U + 2 =1 ω CMAX 0 12 – i n áp u cu n dây thu n c m L c c i khi ω thay i 2 1 1 R 2C2 T ω= (1) => 2 = 2 − (2) => cách vi t ki u (2) m i d nh hơn (1) 2LC − R 2 C 2 ωL ω0 2 Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 2 ZC 1 ω0 ; ZL = ωLL và ZC = 1/ ωLC => = 2 = 2 Z L ωL LC ωL 2LU T U LMAX = (3) = > d ng công th c m i R 4LC − R 2 C 2 2 2 2 2 U U ZC Z ZC => U L max = => U + Z =1 => Z + Z =1 Z 2 LMAX L L L 1− C Z L 2 2 U ω0 2 => Z = Z + Z 2 L 2 2 C => 2tanϕRC.tanϕRLC = – 1 => U + 2 =1 ω LMAX L 13 – Máy phát i n xoay chi u m t pha T thông Φ = Φ 0 cos(ωt + φ) dΦ Su t i n ng c m ng e = − = ωΦ 0 sin(ωt + φ) = E0sin ((ωt + ϕ ) dt 2 2 Φ e => Φ + =1 E 0 0 Ph n ch ng minh các công th c 11; 12 CÔNG TH C HAY : Trong o n m ch xoay chi u , RLC ( cu n dây thu n c m ) v i i n áp hai u o n m ch U = không i. Xét trư ng h p ω thay i . Các b n u bi t 1 – Xét i n áp c c i hai u i n tr R U2 1 URmax = (1a) => khi ω2RLC = 1 => ω R = 2 (1b) R LC 2- Xét i n áp c c i hai ut i nC L 2 − R2 2 LU C UCmax = ( 2a) Khi : ω = (*) R 4 LC − R 2 C 2 2 L2 Công th c (*) các tài li u tham kh o u vi t như v y, nhưng ch bi n i m t chút xíu thôi là có công th c d nh hơn và liên h hay như sau Bình phương hai v và rút g n L . Ta có 1 R2 R2 ωC = 2 − 2 => ω C = ω R − 2 2 2 (2b) => ω C < ω R LC 2L 2L > V y là gi a (1b) và (2b) có liên h pr i . T (2a ) chia t m u cho 2L và ưa vào căn => ( 2b) thay vào (2a) trong căn , ta có U U MAXC = (2c) t n t i ương nhiên ZC > ZL và không có R 2 Z 1− L Z C 3 – Xét i n áp c c i hai u cu n dây thu n c m L 2 LU 2 ULmax = (3a) Khi ω = ( ** ) R 4 LC − R 2 C 2 2LC − R 2 C 2 Công th c ( ** ) các tài li u tham kh o cũng hay vi t như v y. Tương t như trên bình phương hai v và vi t ngh ch o Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
- Khóa h c LT H môn V t lí (KIT1) – Th y ng Vi t Hùng Facebook: LyHung95 1 R 2C2 1 1 R 2C2 = LC − => 2 = 2 − ( 3b) => ω L > ω R ωL2 2 ωL ωR 2 Gi a (3b) và (1b) l i có liên h n a r i . Tương t dùng (3b) thay (3a) ta có U U MAXL = (3c) t n t i ương nhiên ZL > ZC và không có R 2 Z 1− C Z L 4 – K t h p (1b) , (2b) , (3b) Ta có : ω Cω L = ω R = ω02 2 5- Ch ng minh khi UCmax v i ω thay i thì: 2tanϕRL.tanϕRLC = – 1 1 R2 Ta có : ZL = ωCL = > Z 2 = ωC L2 = L 2 − 2 L2 LC 2L ZRL ZL 2 L R ) ϕ1 => Z 2 = L − R C 2 ) ϕ2 R2 L ωL => = − Z2 = L − Z 2 = Z L ZC − Z 2 = −Z L (Z L − ZC ) L L 2 C ωC Z (Z − Z C ) 1 => L . L =− (1) Z |ZC – ZL| R R 2 ZC => T hình v ZL tan φ1 = tan φRL = (2) R Z − ZC tan φ2 = tan φRLC = L (3) R => T 1,2,3 : 2tanϕRL.tanϕRLC = – 1 Lưu ý là có s 2 phía trư c nhé, nên trư ng h p này URL không vuông góc v i URLC . Ph n khi ULmax ch ng tương t 5– Khi ω thay i v i ω = ωC thì UCmax và ω = ωL thì ULmax nhưng n u vi t theo bi u th c d ng 2a và 3a thì : UCmax = ULmax cùng m t d ng, nhưng i u ki n có nghi m là ω = ωC ≠ ω = ωL Nhưng n u vi t d ng (2c) và (3c) thì l i khác nhau . C hai cách vi t d ng a hay c c a UmaxC hay UmaxL u r t d nh . 6 – Khi các giá tr i n áp c c i UmaxR ; UmaxC ; Umax L v i các t n s tương ng ωR ; ωC ; ωL thì có m t m i quan h cũng r t c bi t ó là ωL > ωR > ωC => i u này d dàng t các bi u th c 2b và 3b Nh n xét : Có th nói còn r t nhi u h qu hay v n d ng t hai dao ng có pha vuông góc ho c t con s 1 v ph i . Ta có th dùng gi i nhi u bài toán nhanh và d nh ! Tham gia khóa h c LT H KIT-1 và Luy n gi i môn V t lí t i Hocmai.vn t k t qu cao nh t trong kỳ TS H năm 2014!
![](images/graphics/blank.gif)
Thêm tài liệu vào bộ sưu tập có sẵn:
![](images/icons/closefanbox.gif)
Báo xấu
![](images/icons/closefanbox.gif)
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
![](https://tailieu.vn/static/b2013az/templates/version1/default/js/fancybox2/source/ajax_loader.gif)