Link xem tivi trực tuyến nhanh nhất xem tivi trực tuyến nhanh nhất xem phim mới 2023 hay nhất xem phim chiếu rạp mới nhất phim chiếu rạp mới xem phim chiếu rạp xem phim lẻ hay 2022, 2023 xem phim lẻ hay xem phim hay nhất trang xem phim hay xem phim hay nhất phim mới hay xem phim mới link phim mới

intTypePromotion=1
ADSENSE

Bài giảng Lý thuyết xác suất và thống kê toán - Chương 2: Biến ngẫu nhiên

Chia sẻ: Giang Hạ Vân | Ngày: | Loại File: PDF | Số trang:52

15
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Lý thuyết xác suất và thống kê toán - Chương 2: Biến ngẫu nhiên. Chương này cung cấp cho học viên những kiến thức về: khái niệm biến ngẫu nhiên; biểu diễn biến ngẫu nhiên; hàm phân phối biến ngẫu nhiên; hai biến ngẫu nhiên rời rạc độc lập; hàm của biến ngẫu nhiên; các đặc trưng của biến ngẫu nhiên;... Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Bài giảng Lý thuyết xác suất và thống kê toán - Chương 2: Biến ngẫu nhiên

  1. Bài giảng LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Chương 2 BIẾN NGẪU NHIÊN Thạc sĩ Nguyễn Công Nhựt Kênh video https://www.youtube.com/c/Toanchobacdaihoc Nguyen Cong Nhut Ngày 13 tháng Lý thuyết xác suất và7thống năm 2021 kê toán Ngày 13 tháng 7 năm 2021 1 / 52
  2. LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Hướng dẫn cách học - chi tiết cách đánh giá môn học Tài liệu, video bài giảng được đưa lên elearning hàng tuần. Sinh viên tải về, in ra và mang theo khi học. Điểm tổng kết môn học được đánh giá xuyên suốt quá trình học Điểm quá trình: 20% Kiểm tra giữa kỳ: 20% Thi cuối kỳ: 60%, thi trắc nghiệm 60 phút Cán bộ giảng dạy Thạc sĩ Nguyễn Công Nhựt ĐT: 0933373432 Email: ncnhut@ntt.edu.vn Zalo: 0378910071 Facebook: https://www.facebook.com/congnhut.nguyen/ Blog: https://nguyennhutblog.wordpress.com/ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 2 / 52
  3. Content 1 KHÁI NIỆM CƠ BẢN VỀ LÝ THUYẾT XÁC SUẤT 2 BIẾN NGẪU NHIÊN 3 MỘT SỐ PHÂN PHỐI XÁC SUẤT THÔNG DỤNG 4 LÝ THUYẾT MẪU 5 ƯỚC LƯỢNG THAM SỐ THỐNG KÊ 6 KIỂM ĐỊNH GIẢ THUYẾT CHO MỘT THAM SỐ THỐNG KÊ 7 HỒI QUY VÀ TƯƠNG QUAN 8 THỐNG KÊ MÔ TẢ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 3 / 52
  4. Content 1 KHÁI NIỆM CƠ BẢN VỀ LÝ THUYẾT XÁC SUẤT 2 BIẾN NGẪU NHIÊN 3 MỘT SỐ PHÂN PHỐI XÁC SUẤT THÔNG DỤNG 4 LÝ THUYẾT MẪU 5 ƯỚC LƯỢNG THAM SỐ THỐNG KÊ 6 KIỂM ĐỊNH GIẢ THUYẾT CHO MỘT THAM SỐ THỐNG KÊ 7 HỒI QUY VÀ TƯƠNG QUAN 8 THỐNG KÊ MÔ TẢ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 4 / 52
  5. BIẾN NGẪU NHIÊN NỘI DUNG 2-1 Khái niệm biến ngẫu nhiên 2-2 Biểu diễn biến ngẫu nhiên 2-3 Hàm phân phối biến ngẫu nhiên 2-4 Hai biến ngẫu nhiên rời rạc độc lập 2-5 Hàm của biến ngẫu nhiên 2-6 Các đặc trưng của biến ngẫu nhiên Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 5 / 52
  6. 2.1 Khái niệm biến ngẫu nhiên Định nghĩa Một biến ngẫu nhiên (random variable) với giá trị thực là một hàm số đo được trên một không gian xác suất: X : (Ω, P ) → R Hình: Biến ngẫu nhiên X. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 6 / 52
  7. 2.1 Khái niệm biến ngẫu nhiên Ví dụ 1. Thực hiện phép thử tung đồng xu 3 lần, gọi X là biến ngẫu nhiên chỉ số mặt sấp có được trong 3 lần tung. Ta có không gian mẫu của phép thử Ω = {NNN , NNS , NSN , NSS , SNN , SNS , SSN , SSS } Và biến ngẫu nhiên X : Ω → R có các giá trị như sau: X(NNN)=0, X(SNN)=1, X(NNS)=1, X(SNS)=2, X(NSN)=1, X(SSN)=2, X(NSS)=2, X(SSS)=3. Như vậy về mặt xác suất của biến ngẫu nhiên ta có: P (X = 0) = 18 ; P (X = 1) = 38 ; P (X = 2) = 38 ; P (X = 3) = 81 Lưu ý. Ký hiệu P (X = 2) = 38 có thể hiểu là xác suất tung đồng xu 3 lần 2 lần được sấp là bằng 3/8. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 7 / 52
  8. 2.1 Khái niệm biến ngẫu nhiên Người ta thường dùng các chữ in X ; Y ; Z ... để ký hiệu các biến ngẫu nhiên và các chữ thường x ; y ; z ... để chỉ các giá trị của biến ngẫu nhiên. Ta ký hiệu biến ngẫu nhiên X nhận giá trị x là X = x và xác suất để X nhận giá trị x là P (X = x ). Có hai loại biến ngẫu nhiên: 1 Biến ngẫu nhiên rời rạc 2 Biến ngẫu nhiên liên tục Biến ngẫu nhiên rời rạc: nếu tập giá trị của biến ngẫu nhiên chỉ nhận hữu hạn hoặc vô hạn đếm được các giá trị. Ta có thể liệt kê các giá trị của biến ngẫu nhiên rời rạc x1 , x2 , ..., xn . Biến ngẫu nhiên liên tục: là biến ngẫu nhiên mà các giá trị của nó lấp đầy một hoặc một số khoảng nào đó trên trục số thực, hoặc toàn bộ trục số thực. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 8 / 52
  9. 2.2. Biểu diễn biến ngẫu nhiên 2.2.1 Biến ngẫu nhiên rời rạc Bảng phân phối xác suất X x 1 x2 ··· xk ··· P (X = xi ) p1 p2 ··· pk ··· Tính chất 1 pi ≥ 0, ∀i , +∞ +∞ 2 ∑ P (X = xi ) = ∑ pi =1 i =1 i =1 3 P (a ≤ X ≤ b) = ∑ P (X = xi ) = ∑ pi . a ≤x ≤b i a ≤x ≤b i Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 9 / 52
  10. 2.2. Biểu diễn biến ngẫu nhiên 2.2.1 Biến ngẫu nhiên rời rạc Ví dụ 2. Biến ngẫu nhiên rời rạc X có luật phân phối xác suất như sau: X 0 1 4 6 P 3/10 4/10 m 2/10 Tìm a) m = 1 − (3/10 + 4/10 + 2/10) = 1/10 b) P (1 ≤ X ≤ 3) = P (X = 1) = 4/10 c) P (1 < X < 6) = P (X = 4) = 1/10 d) P (X 2 ≤ 3) = P (X = 0) + P (X = 1) = 3/10 + 4/10 = 7/10 Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 10 / 52
  11. 2.2. Biểu diễn biến ngẫu nhiên 2.2.2 Biến ngẫu nhiên liên tục - Hàm mật độ xác suất (Probability distribution function) Định nghĩa (Hàm mật độ xác suất) Cho biến ngẫu nhiên liên tục X , có tập giá trị D , hàm mật độ xác suất của biến ngẫu nhiên X là hàm f (x ) thỏa với mọi a , b ∈ D thì: Zb P (a ≤ X ≤ b) = f (x )dx a Hàm f (x ) xác định trên R thỏa mãn các tính chất sau: 1 f (x ) ≥ 0, ∀x ∈ R, R∞ + 2 f (x )dx = 1. −∞ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 11 / 52
  12. 2.2. Biểu diễn biến ngẫu nhiên 2.2.2 Biến ngẫu nhiên liên tục Hàm mật độ xác suất (Probability distribution function) Ví dụ 3. Cho biến ngẫu nhiên X liên tục có hàm mật độ dạng kx 3 , khi 0 < x < 1  f (x ) = 0, khi x ≤ 0 ∨ x ≥ 1 1 Xác định hằng số k 2 Tính P (0.4 ≤ X ≤ 0.6), 1. Theo tính chất (2) ta có −∞ f (x )dx = 1 ⇔ −∞ 0dx + 0 kx dx + 1 0dx = 1 ⇔ k 0 x 3 dx = 1 R +∞ R0 R1 3 R +∞ R1 ⇔ k 14 = 1 ⇔ k = 4. 2. P (0, 4 ≤ X ≤ 0, 6) = 0,4 4x 3 dx = 125 R 0,6 13 Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 12 / 52
  13. 2.3. Hàm phân phối xác suất 2.3.1 Định nghĩa Định nghĩa Hàm phân phối của biến ngẫu nhiên X , kí hiệu F (x ), là một đại lượng cho biết tỉ lệ phần trăm giá trị của X nằm về phía bên trái của số nào đó: F (x ) = P (X ≤ x ), với mọi x ∈ R. Hàm phân phối xác suất hay còn gọi là hàm phân phối tích lũy. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 13 / 52
  14. 2.3. Hàm phân phối xác suất 2.3.2 Biến ngẫu nhiên rời rạc F (x ) = P (X ≤ x) = ∑ P (X = xi ) = ∑ pi x
  15. 2.3. Hàm phân phối xác suất 2.3.2 Biến ngẫu nhiên liên tục Zx F (x ) = P (X ≤ x) = f (t )dt , ∀x ∈ R −∞ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 15 / 52
  16. 2.3. Hàm phân phối xác suất 2.3.2 Biến ngẫu nhiên liên tục Ví dụ 4. 4x 3 , khi 0 < x < 1  Cho biến ngẫu nhiên X liên tục có hàm mật độ xác suất f (x ) = 0, khi x ≤ 0 ∨ x ≥ 1 Lập hàm phân phối xác suất cho biến ngẫu nhiên X . Nếu x < 0 ta có F (x ) = −∞ f (t )dt = −∞ 0dt = 0 Rx Rx Nếu 0 ≤ Rx < 1 ta có R F (x ) = −x ∞ f (t )dt = −0 ∞ 0dt + 0x f (t )dt = 0x 4t 3 dt = t 4
  17. x0 = x 4 R R
  18. Nếu 1 ≤ Rx ta có F (x ) = −x ∞ f (t )dt = −0 ∞ 0dt + 01 f (t )dt + 1x 0dt = 01 4t 3 dt = 1 R R R R Vậy hàm phân phối của biến ngẫu nhiên X có dạng  0 ,x < 0  F (x ) =  x 4 , 0 ≤ x < 1 1 ,1 ≤ x Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 16 / 52
  19. 2.3. Hàm phân phối xác suất 2.3.3 Tính chất Tính chất 1 0 ≤ F (x ) ≤ 1, 2 F (x ) là hàm không giảm, liên tục trái, 3 F (+∞) = 1, F (−∞) = 0, 4 Đối với biến ngẫu nhiên liên tục, nếu F khả vi tại điểm x thì F ′ (x ) = f (x ). Hệ quả Nếu X liên tục thì P (a ≤ X ≤ b ) = P (a < X ≤ b ) = P (a ≤ X < b ) = P (a < X < b ) = F (b ) − F (a ). Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 17 / 52
  20. 2.4. Hai biến ngẫu nhiên độc lập Hai biến ngẫu nhiên X , Y được gọi là độc lập với nhau khi và chỉ khi xác suất biến ngẫu nhiên này nhận giá trị không ảnh hưởng đến xác suất biến ngẫu nhiên kia nhận giá trị. Và theo công thức nhân xác suất ta có: P [(X = xi ) · (Y = yj )] = P (X = xi ) · P (Y = yj ) = pi qj ∀i , j Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 13 tháng 7 năm 2021 18 / 52
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2