
Ảnh hưởng của các khuyết
tật bề mặt
đến sự lan truyền sóng
rayleigh
P
GS.
TS. lê
bá sơn
B
ộ môn
Vật lý
K
hoa Khoa học cơ bản - Trường Đại học GTVT
Tóm tắt: Trong bài này chúng tôi trình
bày sự lan truyền của sóng mặt Rayleigh khi
gặp các khuyết tật mặt và phương pháp
giảm ảnh hưởng của sự lan truyền sóng này.
Summary: In the article, we present the
spreading of Rayleigh waves when
encountering deformities on the surface and
suggest measures to decrease impacts of this
spreading
i. mở đầu

Các phương tiện giao thông vận tải, các
máy móc thiết bị khi làm việc gây ra các dao
động cơ học. Các dao động này lan truyền
trong không khí, trong nước, trong đất tạo nên
các sóng cơ. Trong nhiều trường hợp các
sóng cơ gây ảnh hưởng xấu đến các công
trình xây dựng, đến sinh hoạt của cộng đồng.
Nghiên cứu làm giảm sự lan truyền sóng cơ
truyền trong đất là mục đích của bài này.
Chú ý đến sự lan truyền của sóng cơ
trong đất ta thấy: nguồn sóng (các thiết bị gây
ra các dao động) tạo ra các loại sóng khối
dọc, sóng khối ngang và sóng mặt. Nhưng
các loại sóng khối khó có thể truyền xa vì
năng lượng loại sóng này giảm nhanh theo
khoảng cách. Chỉ có loại sóng truyền trên lớp
mỏng bề mặt - sóng mặt - mới có thể lan
truyền xa được. Loại sóng truyền trên mặt đất
nói riêng và trên bề mặt chất rắn nói chung,
được Rayleigh nghiên cứu đầu tiên và nó
được mang tên ông. Như vậy việc làm giảm
sự lan truyền sóng cơ trong đất tức là làm
giảm sự lan truyền của sóng Rayleigh.
Sóng Rayleigh truyền trong đất gặp các
khuyết tật bề mặt một phần bị phản xạ, phần
bị biến đổi thành sóng khối dọc và sóng khối
ngang phần còn lại sẽ tiếp tục truyền đi. Với
chúng ta phần này càng ít càng tốt. Cũng nên
lưu ý rằng nguồn sóng sinh ra sóng không thể
đơn sắc. Sóng lan truyền là tập hợp vô số các
sóng với tần số khác nhau. Tuy nhiên môi
trường đất bao gồm các hạt rất nhỏ, không
phải là lý tưởng. Đất hấp thụ các sóng có tần
số cao và tán xạ các sóng có tần số thấp.
Thực nghiệm chứng tỏ chỉ có các loại sóng có
tần số cỡ vài trăm Hz mới lan truyền xa trong
đất được. Tập hợp các sóng này tạo nên bó
sóng. Biên độ của các cũng phụ thuộc vào tần
số và được mô tả ở hình 1.
Để thuận tiện cho việc nghiên cứu đặt
véc tơ dịch chuyển của các phần tử trong môi
trường rotgradu với thế vô hướng
và thế véc tơ. Các thế này được biểu diễn
dưới dạng tổng các thế đơn sắc:
=
n
1j j; j
n
1j
.
j, j là các thế đơn sắc ứng với một tần
số xác định.
Các thế vô hướng và véc tơ thoả
mãn phương trình sóng:
+ k 2
1= 0 ; k1 = [/(+ 2)]1/2
(1)
+ k 2
2 = 0; k2 = [/]1/2 (1’)
Để nghiên cứu quá trình truyền sóng,
ban đầu chúng ta khảo sát sóng mặt Rayleigh
với tần số xác định. Sau đó dùng nguyên lý
chồng chất sóng chúng ta khảo sát sự lan
truyền của bó sóng mặt Rayleigh. Cũng
tương tự như trong [1], [2] chúng ta sẽ dùng
pháp nhiễu loạn bờ, các phương pháp hàm
giải tích xác định các đặc trưng nhiễu xạ. Từ
đó tìm cách giảm thiểu các hệ số truyền.
Hình 1. Sự phụ thuộc biên độ vào tần số
A
0

Sãng
tíi
Rayleigh
z
x
0a
l
-a
-h
Hình 2. Mô hình bài toán truyền sóng Rayleigh và
khuyết tật mặt
ii. mô hình bài toán
Khuyết tật mặt tiết diện không đổi có
dạng như hình 2.
Sóng tới Rayleigh truyền dọc theo trục x
từ trái qua phải, trong nửa không gian vô hạn
z 0. Hàm sóng tới phẳng đơn sắc có dạng:
i = (A0/2ikrp)pZ
xik
e
e
r;
i = (A0/(2kr2 - k22)sZ
xik
e
e
r
Các số sóng p = (kr2 - k12)1/2;
s = (kr2 - k22)1/2
, , : các hệ số Lamé và khối lượng
riêng của môi trường còn các đại lượng
A0: biên độ của sóng tới; số sóng Rayleigh kr
thoả mãn phương trình:
F(kr) = (2kr2 - k22)2 - 4kr2 ps = 0 (3)
Khuyết tật chạy theo trục Oy. Mặt cắt của
khuyết tật trong mặt phẳng oxz được mô tả
bởi phương trình:
S(x,z) = Z - r(x) = 0 (4)
Hàm hình dạng (x) tuỳ thuộc vào khuyết
tật cụ thể và (0) = -1; còn = r
h
là một
tham số nhỏ (khoảng 0,1); r = r
k
2 bước
sóng Rayleigh.
Khuyết tật có mặt tự do nên trên mặt
S(x,z) = 0, ứng suất pháp và ứng suất tiếp
phải triệt tiêu:
Tnt = 0; Tnn = 0 (5)
III. trường sóng nhiễu xạ
Khi sóng Rayleigh tới khuyết tật, một
phần của sóng bị phản xạ, phần bị tán xạ và
một phần truyền qua. Sóng trong môi trường
đất được biểu diễn dưới dạng:
= i +
1m
mm ; = i +
1m
m m (6)
Biểu thức trong phương trình (6) là chuỗi
luỹ thừa của tham số với i và i là các thế
của sóng tới Rayleigh. Rõ ràng rằng , phải
thoả mãn phương trình truyền sóng (1). Và vì
chỉ là tham số nên m và m cũng phải thoả
mãn phương trình truyền sóng (1) với mỗi giá
trị của m:
Thay vào điều kiện bờ ta được:
Tnt = 2.
2
2
2
22
nt
nt = 0
Tnn =
tn
2
n
2
t
2
2
2
2
2
= 0
(7)
trong đó: n,t lần lượt là phương pháp tuyến và
tiếp tuyến của mặt S.
Vì là rất nhỏ, ứng suất trên S có thể ở
gần đúng bậc nhất chuỗi Taylor
Tnn S = Tnn Z=0 +
z
Tnn
Z=0 r (x)
và tương tự cho Tnt và biểu diễn n
,
t
qua
z
,
x
và r d/dx theo:
(2

xdx
df
zdx
df
1
nr
2/1
2
r
xzdx
df
dx
df
1
tr
2/1
2
r
Như vậy điều kiện biên ở phương trình
(7) có thể phát triển thành chuỗi luỹ thừa
nhưng với điều kiện rd/dx < 1 để
[1 + (rd/dx)]-1/2 phù hợp với bài toán: Sự
giới hạn này sẽ được nói ở phần sau.
Điều kiện biên khi Z = 0 buộc chúng ta
giải m và m với mọi m trước hết giải (7) với
m = 1 ta có:
1
22
2
1
2
zx
zx
20,xP
i
2
i
2
2
i
2
2
rzx
2
zx
dx
df
2
i
2
3
i
3
3
i
2
3
rzxzzx
2xf
(8)
i
2
3
i
3
3
r
i
3
3
i
2
3
r
1
2
1
2
2
2
2
zxz
xf2
zzx
xf
xz
2
z
2
x
0,xQ
(9)
Phương trình (8) và (9) thể hiện ứng suất
tiếp và ứng suất pháp trên mặt Z = 0 được kết
hợp với 1 và 1. 1, 1 đã được xác định.
Với m 2, m m và mm giải được bằng
cách tương tự nhưng không cần thiết bởi
nhỏ nên với m 2, m m và m m có m là bé
hơn rất nhiều lần.
Dùng khai triển Fourier ta có thể biểu
diễn:
1(x,z) =
kF
1
2 [2k2P(k) +
+ (2k2 - k22)Q(k)]eikx xik
e1
dk, z 0
(10)
1(x,e) =
kF
1
2[2k1Q(k) +
+ (k22 - 2k2)P(k)]eikx xik2
e
dk, Z
0
(11)
trong đó: F(k) = 4k2 1 2 + (k22 - 2k2)2
(12)
1
2/1
2
1
2
1
2/1
22
1
1kknÕukki
kknÕukk
2
2/1
2
2
2
2
2/1
22
2
2kknÕukki
kknÕukk
P(k) =
0,xP e-ikx dx
Q(k) =
0,xQ e-ikx dx
Hình 3. Các cực điểm và những lát cắt của đường
lấy tích phân trên mặt phẳng phức k
iv. Sóng phản xạ Rayleigh
Tích phân trong phương trình (10) và
(11) có thể phân tích thành những tích phân
theo các lát cắt và phần giá trị thặng dư của
hàm tại những cực điểm trong mặt phẳng
phức k. Thặng dư tại những cực k = -kr cho
chúng ta biểu thức sóng Rayleigh phản xạ:
(1
3)

1(x, z) =
r
k
dk/dF
1i
. [- 2ikrsP(-kr) +
+ (2kr2 - k22) Q(-kr)] xikr
e
epz
(14a)
1(x,z) =
r
k
dk/dF
1i
[- 2ikrpQ(-kr) +
+ (k22 - 2kr2) P(-kr)] xikr
e
esz
(14b)
(dF/dk)-r
k= 8krs(p - s) + 4kr3(p - s)2/ps
(15)
Gọi
là hệ số phản xạ biên độ, được
định nghĩa như sau:
=
0,0
0,0
0,0
0,0
i
1
i
1
(16)
chúng ta sẽ nhận được biểu thức:
= -i(h/r)[krH(-kr)]
(17)
với là đại lượng không có thứ nguyên:
1
kr r
)dk/dF(kp4
.
.
r
4
2
r
2
1
2
2r k2
k
)ps(sk2)kk(
p
s
k4
(18)
v. Sóng khối
tán xạ
Tích phân
theo các lát cắt
cho biểu thức
thế sóng khối
.)ikexp(.)k)((.),(. r
2/1
r1
B
1
kr 1
.)ikexp(.)k)((.),(. r
2/1
r1
B
1
kr 1
Với:
2/1
1)2(
)4/3iexp(
)(
.
. )
)k(Q
)kk2(
)k(P
k2(
)k(F
sink 2
1
2
1
2
(19)
2/1
1)2(
)4/3iexp(
)(
.
. )
)k(P
)k2k(
)k(Q
k2(
)k(F
sink 2
2
21
2
(20)
Véc tơ Poyting âm học lấy giá trị trung
bình chỉ phụ thuộc vào góc:
SB= i [SP),( + SSV ),( ] (21)
SP),( =
.2(
k2
k.
4
r
2
1
2)SP)(;
S SV ),( =
4
r
2
2
2
k2
k. S SV )( (22)
Còn:
2
2
1
2
rP k.),(kS ;
SSV )(= 2
2
1
2
rk.),(k (23)
Công suất của chùm sóng khối bức xạ:
UB=)WW(
k2
k. SV
P
4
r
2
2
2
(24)
Với: W P=
0
Pd).(S ;
WSV =
0
SV d).(S
Năng lượng của sóng tới và sóng phản
(25)