
▲✐♠✐t✐♥❣ ❙✉❜❣r❛❞✐❡♥ts ♦❢ t❤❡ ▼❛r❣✐♥❛❧ ❋✉♥❝t✐♦♥
✐♥ ❙♦♠❡ P❛t❤♦❧♦❣✐❝❛❧ ❙♠♦♦t❤ Pr♦❣r❛♠♠✐♥❣ Pr♦❜❧❡♠s
❚❤❛✐ ❉♦❛♥ ❈❤✉♦♥❣
(a)
❆❜str❛❝t✳
■♥ t❤✐s ♣❛♣❡r ✇❡ s❤♦✇ t❤❛t t❤❡ r❡s✉❧ts ♦❢ ▼♦r❞✉❦❤♦✈✐❝❤✱ ◆❛♠ ❛♥❞
❨❡♥ ❬✻❪ ♦♥ ❞✐❢❢❡r❡♥t✐❛❧ st❛❜✐❧✐t② ✐♥ ♣❛r❛♠❡tr✐❝ ♣r♦❣r❛♠♠✐♥❣ ❝❛♥ ❜❡ ✉s❡❞ t♦ ❞❡r✐✈❡ ✉♣✲
♣❡r ❡st✐♠❛t❡s ❢♦r t❤❡ ❧✐♠✐t✐♥❣ s✉❜❣r❛❞✐❡♥ts ♦❢ t❤❡ ♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥ ✐♥ s♦♠❡ ♣❛t❤♦✲
❧♦❣✐❝❛❧ s♠♦♦t❤ ♣r♦❣r❛♠♠✐♥❣ ♣r♦❜❧❡♠s ♣r♦♣♦s❡❞ ❜② ●❛✉✈✐♥ ❛♥❞ ❉✉❜❡❛✉ ❬✷❪✳
✶✳
■♥tr♦❞✉❝t✐♦♥
▲❡t
ϕ:X×Y→R
❜❡ ❛ ❢✉♥❝t✐♦♥ t❛❦✐♥❣ ✈❛❧✉❡s ✐♥ t❤❡ ❡①t❡♥❞❡❞ r❡❛❧ ❧✐♥❡
R:= [−∞,∞]
✱
G:X⇒Y
❛ s❡t✲✈❛❧✉❡❞ ♠❛♣♣✐♥❣ ❜❡t✇❡❡♥ ❇❛♥❛❝❤ s♣❛❝❡s✳ ❈♦♥s✐❞❡r t❤❡ ♣❛r❛♠❡tr✐❝
♣r♦❣r❛♠♠✐♥❣ ♣r♦❜❧❡♠
♠✐♥✐♠✐③❡
ϕ(x, y)
s✉❜❥❡❝t t♦
y∈G(x).
✭✶✳✶✮
❚❤❡ ❡①t❡♥❞❡❞✲r❡❛❧✲✈❛❧✉❡❞ ❢✉♥❝t✐♦♥
µ(x) := inf{ϕ(x, y)|y∈G(x)}
✭✶✳✷✮
✐s s❛✐❞ t♦ ❜❡ t❤❡
♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥
✭♦r t❤❡
✈❛❧✉❡ ❢✉♥❝t✐♦♥
✮ ♦❢ ✭✶✳✶✮✳ ❚❤❡
s♦❧✉t✐♦♥ ♠❛♣
M(·)
♦❢ t❤❡ ♣r♦❜❧❡♠ ✐s ❞❡❢✐♥❡❞ ❜②
M(x) := {y∈G(x)|µ(x) = ϕ(x, y)}.
✭✶✳✸✮
❋♦r ✭✶✳✶✮✱ ✇❡ s❛② t❤❛t
ϕ
✐s t❤❡
♦❜❥❡❝t✐✈❡ ❢✉♥❝t✐♦♥
❛♥❞
G
✐s t❤❡
❝♦♥str❛✐♥t ♠❛♣♣✐♥❣
✳
❈♦♥t✐♥✉✐t② ❛♥❞ ❞✐❢❢❡r❡♥t✐❛❜✐❧✐t② ♣r♦♣❡rt✐❡s ♦❢
µ
✐♥ t❤❡ ❝❛s❡ ✇❤❡r❡
X=Rn
✱
Y=Rm
✱
ϕ
✐s ❛ s♠♦♦t❤ ❢✉♥❝t✐♦♥ ✭✐✳❡✳✱ ❛
C1
✲❢✉♥❝t✐♦♥✮ ❛♥❞
G(x)
✐s t❤❡ s❡t ♦❢ ❛❧❧
x
s❛t✐s❢②✐♥❣ t❤❡
♣❛r❛♠❡tr✐❝ ✐♥❡q✉❛❧✐t②✴❡q✉❛❧✐t② s②st❡♠
gi(x, y)60, i = 1, . . . , p;hj(x, y) = 0, j = 1, . . . , q; (1.4)
gi:X×Y→R(i= 1, . . . , p
✮ ❛♥❞
hj:X×Y→R(j= 1, . . . , q
✮ ❛r❡ s♠♦♦t❤ ❢✉♥❝t✐♦♥s✱
✇❡r❡ st✉❞✐❡❞ ❢✐rst❧② ❜② ●❛✉✈✐♥ ❛♥❞ ❚♦❧❧❡ ❬✸❪✱ ●❛✉✈✐♥ ❛♥❞ ❉✉❜❡❛✉ ❬✷❪✳ ❚❤❡✐r r❡s✉❧ts
❛♥❞ ✐❞❡❛s ❤❛✈❡ ❜❡❡♥ ❡①t❡♥❞❡❞ ❛♥❞ ❛♣♣❧✐❡❞ ❜② ♠❛♥② ❛✉t❤♦rs❀ s❡❡ ▼♦r❞✉❦❤♦✈✐❝❤✱ ◆❛♠
❛♥❞ ❨❡♥ ❬✻❪✱ ✇❤❡r❡ t❤❡ ❝❛s❡
ϕ
✐s ❛ ♥♦♥s♠♦♦t❤ ❢✉♥❝t✐♦♥ ❛♥❞
G
✐s ❛♥ ❛r❜✐tr❛r② s❡t✲✈❛❧✉❡❞
♠❛♣ ❜❡t✇❡❡♥ ❇❛♥❛❝❤ s♣❛❝❡s ✐s ✐♥✈❡st✐❣❛t❡❞✱ ❛♥❞ t❤❡ r❡❢❡r❡♥❝❡s t❤❡r❡✐♥✳
❲❡ ✇✐❧❧ s❤♦✇ t❤❛t t❤❡ r❡s✉❧ts ♦❢ ❬✻❪ ♦♥ ❞✐❢❢❡r❡♥t✐❛❧ st❛❜✐❧✐t② ✐♥ ♣❛r❛♠❡tr✐❝ ♣r♦❣r❛♠✲
♠✐♥❣ ❝❛♥ ❜❡ ✉s❡❞ t♦ ❡st✐♠❛t❡ t❤❡ s❡t ♦❢ ❧✐♠✐t✐♥❣ s✉❜❣r❛❞✐❡♥ts ✭✐✳❡✳ t❤❡ ❧✐♠✐t✐♥❣ s✉❜❞✲
✐❢❢❡r❡♥t✐❛❧✮ ♦❢ t❤❡ ♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥ ✐♥ s✐① ❵❵♣❛t❤♦❧♦❣✐❝❛❧✧ s♠♦♦t❤ ♣r♦❣r❛♠♠✐♥❣ ♣r♦❜✲
❧❡♠s ♣r♦♣♦s❡❞ ❜② ●❛✉✈✐♥ ❛♥❞ ❉✉❜❡❛✉ ❬✷❪✳ ❚❤✉s✱ ❣❡♥❡r❛❧ r❡s✉❧ts ♦♥ ❞✐❢❢❡r❡♥t✐❛❜✐❧✐t②
◆❤❐♥ ❜➭✐ ♥❣➭② ✸✵✴✸✴✷✵✵✼✳ ❙ö❛ ❝❤÷❛ ①♦♥❣ ♥❣➭② ✷✸✴✺✴✷✵✵✼✳

♣r♦♣❡rt✐❡s ♦❢ t❤❡ ♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥ ♦❢ ✭✶✳✶✮ ❛r❡ ✈❡r② ✉s❡❢✉❧ ❡✈❡♥ ❢♦r t❤❡ ❝❧❛ss✐❝❛❧ ❢✐♥✐t❡✲
❞✐♠❡♥s✐♦♥❛❧ s♠♦♦t❤ s❡tt✐♥❣ ♦❢ t❤❡ ♣r♦❜❧❡♠✳ ❲❡ ❛❧s♦ ❝♦♥s✐❞❡r s❡✈❡r❛❧ ✐❧❧✉str❛t✐✈❡ ❡①✲
❛♠♣❧❡s ❢♦r t❤❡ r❡s✉❧ts ♦❢ ❬✻❪✳ ❯♥❧✐❦❡ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❡①❛♠♣❧❡s ✐♥ t❤❛t ♣❛♣❡r✱ ❛❧❧ t❤❡
♣r♦❜❧❡♠s ❝♦♥s✐❞❡r❡❞ ❤❡r❡✐♥ ❛r❡
s♠♦♦t❤
✳
❚❤❡ ❡♠♣❤❛s✐s ✐♥ ❬✶❪✲✲❬✸❪ ✇❛s ♠❛❞❡ ♦♥ t❤❡ ❈❧❛r❦❡ s✉❜❣r❛❞✐❡♥ts ♦❢
µ
✱ ✇❤✐❧❡ t❤❡ ♠❛✐♥
❝♦♥❝❡r♥ ♦❢ ❬✻❪ ✐s ❛❜♦✉t t❤❡ ❋r❡❝❤❡t ❛♥❞ t❤❡ ❧✐♠✐t✐♥❣ s✉❜❣r❛❞✐❡♥ts ♦❢
µ
✳ ❚❤❡ r❡❛❞❡r
✐s r❡❢❡rr❡❞ t♦ ❬✹✱ ✺❪ ❢♦r ✐♥t❡r❡st✐♥❣ ❝♦♠♠❡♥ts ♦♥ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ t❤❡ ❝♦♥❝❡♣ts ♦❢
s✉❜❣r❛❞✐❡♥ts ❥✉st ♠❡♥t✐♦♥❡❞✳ ◆♦t❡ t❤❛t✱ ✉♥❞❡r ✈❡r② ♠✐❧❞ ❛ss✉♠♣t✐♦♥s ♦♥
X
❛♥❞
ϕ
✱ t❤❡
❝♦♥✈❡① ❤✉❧❧ ♦❢ t❤❡ ❧✐♠✐t✐♥❣ s✉❜❞✐❢❢❡r❡♥t✐❛❧ ♦❢
ϕ
❛t ❛ ❣✐✈❡♥ ♣♦✐♥t
x∈X
❝♦✐♥❝✐❞❡s ✇✐t❤
t❤❡ ❈❧❛r❦❡ s✉❜❞✐❢❢❡r❡♥t✐❛❧ ♦❢
ϕ
❛t t❤❡ ♣♦✐♥t✳ ❙♦✱ t❤❡ ❧✐♠✐t✐♥❣ s✉❜❞✐❢❢❡r❡♥t✐❛❧ ❝❛♥ ❜❡
❝♦♥s✐❞❡r❡❞ ❛s t❤❡ ✭♥♦♥❝♦♥✈❡①✮ ❝♦r❡ ♦❢ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❈❧❛r❦❡ s✉❜❞✐❢❢❡r❡♥t✐❛❧✳ ❚❤✉s
✉♣♣❡r ❡st✐♠❛t❡s ❢♦r t❤❡ ❧✐♠✐t✐♥❣ s✉❜❞✐❢❢❡r❡♥t✐❛❧ ♦❢ ♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥s ❝❛♥ ❧❡❛❞ t♦ s❤❛r♣
✉♣♣❡r ❡st✐♠❛t❡s ❢♦r t❤❡ ❈❧❛r❦❡ s✉❜❞✐❢❢❡r❡♥t✐❛❧✳
✷✳
Pr❡❧✐♠✐♥❛r✐❡s
▲❡t ✉s r❡❝❛❧❧ s♦♠❡ ♠❛t❡r✐❛❧ ♦♥ ❣❡♥❡r❛❧✐③❡❞ ❞✐❢❢❡r❡♥t✐❛t✐♦♥✱ ✇❤✐❝❤ ✐s ❛✈❛✐❧❛❜❧❡ ✐♥ ❬✹✱
✺❪✳ ❆❧❧ t❤❡ s♣❛❝❡s ❝♦♥s✐❞❡r❡❞ ❛r❡ ❇❛♥❛❝❤✱ ✉♥❧❡ss ♦t❤❡r✇✐s❡ st❛t❡❞✳
❉❡❢✐♥✐t✐♦♥ ✷✳✶✳
▲❡t
ϕ:X→R
❜❡ ❛♥ ❡①t❡♥❞❡❞✲r❡❛❧✲✈❛❧✉❡❞ ❢✉♥❝t✐♦♥ ✇❤✐❝❤ ✐s ❢✐♥✐t❡ ❛t
x
✳ ●✐✈❡♥ ❛♥②
ε≥0
✱ ✇❡ s❛② t❤❛t ❛ ✈❡❝t♦r
x∗
❢r♦♠ t❤❡ t♦♣♦❧♦❣✐❝❛❧ ❞✉❛❧ s♣❛❝❡
X∗
♦❢
X
✐s
❛♥
ε−subgradient
♦❢
ϕ
❛t
x
✐❢
lim inf
x→x
ϕ(x)−ϕ(x)− hx∗, x −xi
||x−x|| ≥ −ε.
✭✷✳✶✮
❉❡♥♦t❡ ❜②
ˆ
∂εϕ(x)
t❤❡ s❡t ♦❢ t❤❡
ε
✲s✉❜❣r❛❞✐❡♥ts ♦❢
ϕ
❛t
x
✳ ❈❧❡❛r❧②✱
ˆ
∂0ϕ(x)⊂ˆ
∂εϕ(x)
❢♦r
❡✈❡r②
ε≥0
✳ ❚❤❡ s❡t
ˆ
∂ϕ(x) := ˆ
∂0ϕ(x)
✐s ❝❛❧❧❡❞ t❤❡
❋r❡❝❤❡t s✉❜❞✐❢❢❡r❡♥t✐❛❧
♦❢
ϕ
❛t
x.
❉❡❢✐♥✐t✐♦♥ ✷✳✷✳
❋♦r ❛ s❡t✲✈❛❧✉❡❞ ♠❛♣♣✐♥❣
F:X⇒X∗
❜❡t✇❡❡♥ ❛ ❇❛♥❛❝❤ s♣❛❝❡
X
❛♥❞
✐ts ❞✉❛❧
X∗
✱ t❤❡
s❡q✉❡♥t✐❛❧ P❛✐♥❧❡✈❡✲❑✉r❛t♦✇s❦✐ ✉♣♣❡r ❧✐♠✐t
♦❢
F(x)
❛s
x→x
✐s ❞❡❢✐♥❡❞
❜②
▲✐♠s✉♣
x→x
F(x) := {x∗∈X∗| ∃
s❡q✉❡♥❝❡
xk→x
❛♥❞
x∗
k
w∗
−→ x∗
✇✐t❤
x∗
k∈F(xk)
❢♦r ❛❧❧
k= 1,2, ...},
✇❤❡r❡
w∗
❞❡♥♦t❡s t❤❡ ✇❡❛❦
∗
t♦♣♦❧♦❣② ✐♥
X∗
✳
❉❡❢✐♥✐t✐♦♥ ✷✳✸✳
❚❤❡
❧✐♠✐t✐♥❣ s✉❜❞✐❢❢❡r❡♥t✐❛❧
✭♦r t❤❡
▼♦r❞✉❦❤♦✈✐❝❤✴❜❛s✐❝ s✉❜❞✐❢❢❡r❡♥✲
t✐❛❧
✮ ♦❢
ϕ
❛t
x
✐s ❞❡❢✐♥❡❞ ❜② s❡tt✐♥❣
∂ϕ(x) :=
▲✐♠s✉♣
x
ϕ
−→x
ε↓0
ˆ
∂εϕ(x).
✭✷✳✷✮
❚❤❡
s✐♥❣✉❧❛r s✉❜❞✐❢❢❡r❡♥t✐❛❧
♦❢
ϕ
❛t
x
✐s ❣✐✈❡♥ ❜②
∂∞ϕ(x) :=
▲✐♠s✉♣
x
ϕ
−→x
ε,λ↓0
λˆ
∂εϕ(x).
✭✷✳✸✮

❘❡♠❛r❦ ✷✳✹
✭s❡❡ ❬✹❪✮✳ ■❢
X
✐s ❛♥
❆s♣❧✉♥❞ s♣❛❝❡
✭✐✳❡✳✱ s✉❝❤ t❤❛t ✐ts s❡♣❛r❛❜❧❡ s✉❜s♣❛❝❡s
❤❛✈❡ s❡♣❛r❛❜❧❡ ❞✉❛❧s✮ ❛♥❞ ✐❢
ϕ
✐s
❧♦✇❡r s❡♠✐❝♦♥t✐♥✉♦✉s
❛r♦✉♥❞
x
✱ t❤❡♥ ✇❡ ❝❛♥ ❡q✉✐✈✲
❛❧❡♥t❧② ♣✉t
ε= 0
✐♥ ✭✷✳✷✮✳ ▼♦r❡♦✈❡r✱ ✇❡ ❤❛✈❡
∂ϕ(x)6=∅
❢♦r ❡✈❡r② ❧♦❝❛❧❧② ▲✐♣s❝❤✐t③✐❛♥
❢✉♥❝t✐♦♥✳
❉❡❢✐♥✐t✐♦♥ ✷✳✺✳
▲❡t
X
❜❡ ❛ ❇❛♥❛❝❤ s♣❛❝❡✱
f:X→R
❛ ▲✐♣s❝❤✐t③✐❛♥ ❢✉♥❝t✐♦♥ ❛r♦✉♥❞
x
✳
❚❤❡
❈❧❛r❦❡ s✉❜❞✐❢❢❡r❡♥t✐❛❧
♦❢
f
❛t
x
✐s t❤❡ s❡t
∂CLf(x) := (x∗∈X∗|hx∗, vi6lim sup
x′→x,t→0+
f(x′+tv)−f(x′)
t,∀v∈X).
✭✷✳✹✮
❘❡♠❛r❦ ✷✳✻
✭s❡❡ ❬✹✱ ❚❤❡♦r❡♠ ✸✳✺✼❪✮✳ ❋♦r t❤❡ ❈❧❛r❦❡ s✉❜❞✐❢❢❡r❡♥t✐❛❧ ✐♥ ❆s♣❧✉♥❞ s♣❛❝❡s✱
✇❡ ❤❛✈❡
∂CLf(x) =
❝❧
∗
❝♦
[∂f (x) + ∂∞f(x)],
✭✷✳✺✮
✇❤❡r❡ ❵❵❝♦✧ ❞❡♥♦t❡s t❤❡ ❝♦♥✈❡① ❤✉❧❧ ❛♥❞ ❵❵❝❧
∗
✧ st❛♥❞s ❢♦r t❤❡ ❝❧♦s✉r❡ ✐♥ t❤❡ ✇❡❛❦
∗
t♦♣♦❧✲
♦❣② ♦❢
X∗
✳
❘❡♠❛r❦ ✷✳✼
✭s❡❡ ❬✹❪✮✳ ■❢
ϕ:Rn→R
✐s str✐❝t❧② ❞✐❢❢❡r❡♥t✐❛❜❧❡ ❛t
x
✱ t❤❡♥
∂CLϕ(x) = ∂ϕ(x) = {∇ϕ(x)}.
✭✷✳✻✮
❚❤❡
❞♦♠❛✐♥
❛♥❞ t❤❡
❣r❛♣❤
♦❢ t❤❡ ♠❛♣
F:X⇒Y
❛r❡ ❞❡❢✐♥❡❞✱ r❡s♣❡❝t✐✈❡❧②✱ ❜② s❡tt✐♥❣
❞♦♠
F:= {x∈X|F(x)6=∅},
❣♣❤
F:= {(x, y)∈X×Y|y∈F(x)}.
✸✳
❙✉❜❣r❛❞✐❡♥ts ♦❢ t❤❡ ✈❛❧✉❡ ❢✉♥❝t✐♦♥ ✐♥ s♠♦♦t❤ ♣r♦❣r❛♠♠✐♥❣
♣r♦❜❧❡♠s
❈♦♥s✐❞❡r ✭✶✳✶✮ ✐♥ t❤❡ s♣❡❝✐❛❧ ❝❛s❡ ✇❤❡r❡ t❤❡ ♦❜❥❡❝t✐✈❡ ❢✉♥❝t✐♦♥
ϕ
✐s s♠♦♦t❤ ❛♥❞ t❤❡
❝♦♥str❛✐♥t s❡t ✐s ❣✐✈❡♥ ❜②
G(x) := ny∈Y|ϕi(x, y)60, i = 1, ..., m,
ϕi(x, y) = 0, i =m+ 1, ..., m +ro,
✭✸✳✶✮
✇✐t❤
ϕi:X×Y→R
✭
i= 1, ..., m +r
✮ ❜❡✐♥❣ s♦♠❡ ❣✐✈❡♥ s♠♦♦t❤ ❢✉♥❝t✐♦♥s✳ ❙✉❝❤ ♣r♦❜❧❡♠s
❛r❡ ❝❛❧❧❡❞
s♠♦♦t❤ ♣r♦❣r❛♠♠✐♥❣ ♣r♦❜❧❡♠s
✳
❉❡❢✐♥✐t✐♦♥ ✸✳✶✳
❚❤❡ ❝❧❛ss✐❝❛❧
▲❛❣r❛♥❣✐❛♥
✐s ❞❡❢✐♥❡❞ ❜② s❡tt✐♥❣
L(x, y, λ) = ϕ(x, y) + λ1ϕ1(x, y) + ··· +λm+rϕm+r(x, y),
✭✸✳✷✮
✇❤❡r❡ t❤❡ s❝❛❧❛rs
λ1, ..., λm+r
✭❛♥❞ ❛❧s♦ t❤❡ ✈❡❝t♦r
λ:= (λ1, ..., λm+r)∈Rm+r
✮ ❛r❡ t❤❡
▲❛❣r❛♥❣✐❛♥ ♠✉❧t✐♣❧✐❡rs
✳

●✐✈❡♥ ❛ ♣♦✐♥t
(x, y)∈
❣♣❤
M
✐♥ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ s♦❧✉t✐♦♥
M(·)
✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ s❡t ♦❢
▲❛❣r❛♥❣❡ ♠✉❧t✐♣❧✐❡rs✿
Λ(x, y) := nλ∈Rm+r|Ly(x, y, λ) := ∇yϕ(x, y) +
m+r
X
i=1
λi∇yϕi(x, y) = 0,
λi≥0, λiϕi(x, y) = 0
❢♦r
i= 1, ..., mo.
✭✸✳✸✮
❉❡❢✐♥✐t✐♦♥ ✸✳✷✳
❲❡ s❛② t❤❛t t❤❡
▼❛♥❣❛s❛r✐❛♥✲❋r♦♠♦✈✐t③ ❝♦♥str❛✐♥t q✉❛❧✐❢✐❝❛t✐♦♥ ❝♦♥✲
❞✐t✐♦♥
❤♦❧❞s ❛t
(x, y)
✐❢
t❤❡ ❣r❛❞✐❡♥ts
∇ϕm+1(x, y), ..., ∇ϕm+r(x, y)
❛r❡ ❧✐♥❡❛r❧② ✐♥❞❡♣❡♥❞❡♥t❀
t❤❡r❡ ✐s
w∈X×Y
s✉❝❤ t❤❛t
h∇ϕi(x, y), wi= 0
❢♦r
i=m+ 1, ..., m +r
✭✸✳✹✮
❛♥❞
h∇ϕi(x, y), wi<0
✇❤❡♥❡✈❡r
i= 1, ..., m
✇✐t❤
ϕi(x, y) = 0.
❉❡❢✐♥✐t✐♦♥ ✸✳✸✳
❲❡ s❛② t❤❛t t❤❡ s♦❧✉t✐♦♥ ♠❛♣
M: domG⇒Y
❛❞♠✐ts ❛ ❧♦❝❛❧ ✉♣♣❡r
▲✐♣s❝❤✐t③✐❛♥ s❡❧❡❝t✐♦♥
❛t
(x, y)
✐❢ t❤❡r❡ ❡①✐sts ❛ s✐♥❣❧❡✲✈❛❧✉❡❞ ♠❛♣♣✐♥❣
h: domG→Y
✇❤✐❝❤ s❛t✐s❢✐❡s
h(x) = y
❛♥❞ ❢♦r ✇❤✐❝❤ t❤❡r❡ ❛r❡ ❝♦♥st❛♥ts
ℓ > 0, δ > 0
s✉❝❤ t❤❛t
h(x)∈
G(x)
❛♥❞
kh(x)−h(x)k6ℓkx−xk
❢♦r ❛❧❧
x∈domG∩Bδ(x)
✳ ❍❡r❡
Bδ(x) := {x∈X|kx−xk< δ}.
❚❤❡ ♥❡①t st❛t❡♠❡♥t ❢♦❧❧♦✇s ❢r♦♠ ❬✻✱ ❚❤❡♦r❡♠ ✹✳✶❪✳
❚❤❡♦r❡♠ ✸✳✹ ✭❋r❡❝❤❡t s✉❜❣r❛❞✐❡♥ts ♦❢ ✈❛❧✉❡ ❢✉♥❝t✐♦♥s ✐♥ s♠♦♦t❤ ♥♦♥❧✐♥❡❛r
♣r♦❣r❛♠s ✐♥ ❆s♣❧✉♥❞ s♣❛❝❡s✮✳
▲❡t
µ(.)
❜❡ ❞❡❢✐♥❡❞ ❜②
✭✶✳✷✮
✳ ❚❛❦❡
x∈
❞♦♠
M
❛♥❞
y∈
M(x)
❛♥❞ ❛ss✉♠❡ t❤❛t t❤❡ ❣r❛❞✐❡♥ts
∇ϕ1(x, y), ..., ∇ϕm+r(x, y)
✭✸✳✺✮
❛r❡ ❧✐♥❡❛r❧② ✐♥❞❡♣❡♥❞❡♥t✳ ❚❤❡♥ ✇❡ ❤❛✈❡ t❤❡ ✐♥❝❧✉s✐♦♥
ˆ
∂µ(x)⊂[
λ∈Λ(x,y)∇xϕ(x, y) +
m+r
X
i=1
λi∇xϕi(x, y).
✭✸✳✻✮
❋✉rt❤❡r♠♦r❡✱
✭✸✳✻✮
r❡❞✉❝❡s t♦ t❤❡ ❡q✉❛❧✐t②
ˆ
∂µ(x) = [
λ∈Λ(x,y)∇xϕ(x, y) +
m+r
X
i=1
λi∇xϕi(x, y)
✭✸✳✼✮
✐❢ t❤❡ s♦❧✉t✐♦♥ ♠❛♣
M: domG⇒Y
❛❞♠✐ts ❛ ❧♦❝❛❧ ✉♣♣❡r ▲✐♣s❝❤✐t③✐❛♥ s❡❧❡❝t✐♦♥ ❛t
(x, y)
✳
❋r♦♠ ❬✻✱ ❈♦r♦❧❧❛r② ✹✳✸❪ ✇❡ ♦❜t❛✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ r❡s✉❧t✳
❈♦r♦❧❧❛r② ✸✳✺✳
■♥ t❤❡ ❛ss✉♠♣t✐♦♥s ✐♠♣♦s❡❞ ✐♥ t❤❡ ❢✐rst ♣❛rt ♦❢ ❚❤❡♦r❡♠
✸✳✹
✱ s✉♣♣♦s❡
t❤❛t t❤❡ s♣❛❝❡s ❳ ❛♥❞ ❨ ❛r❡ ❆s♣❧✉♥❞✱ ❛♥❞ t❤❛t t❤❡ q✉❛❧✐❢✐❝❛t✐♦♥ ❝♦♥❞✐t✐♦♥
✭✸✳✺✮
✐s r❡✲
♣❧❛❝❡❞ ❜② t❤❡
✭✸✳✹✮
✳ ❚❤❡♥ ✇❡ ❤❛✈❡ ✐♥❝❧✉s✐♦♥
✭✸✳✻✮
✱ ✇❤✐❝❤ r❡❞✉❝❡s t♦ t❤❡ ❡q✉❛❧✐t②
✭✸✳✼✮

♣r♦✈✐❞❡❞ t❤❛t t❤❡ s♦❧✉t✐♦♥ ♠❛♣
M: domG⇒Y
❛❞♠✐ts ❛ ❧♦❝❛❧ ✉♣♣❡r ▲✐♣s❝❤✐t③✐❛♥ s❡❧❡❝✲
t✐♦♥ ❛t
(x, y)
✳
▲❡t ✉s ❝♦♥s✐❞❡r s♦♠❡ ❡①❛♠♣❧❡s ♦❢
s♠♦♦t❤
♣r♦❣r❛♠♠✐♥❣ ♣r♦❜❧❡♠s ✐❧❧✉str❛t✐♥❣ t❤❡
r❡s✉❧ts ♦❜t❛✐♥❡❞ ✐♥ ❚❤❡♦r❡♠ ✸✳✹ ❛♥❞ ❈♦r♦❧❧❛r② ✸✳✺ ❛♥❞ t❤❡ ❛ss✉♠♣t✐♦♥s ♠❛❞❡ t❤❡r❡✐♥✳
❲❡ st❛rt ✇✐t❤ ❡①❛♠♣❧❡s s❤♦✇✐♥❣ t❤❛t t❤❡ ✉♣♣❡r ▲✐♣s❝❤✐t③✐❛♥ ❛ss✉♠♣t✐♦♥s ♦❢ ❚❤❡♦r❡♠
✸✳✹ ✐s
❡ss❡♥t✐❛❧
❜✉t
♥♦t ♥❡❝❡ss❛r②
t♦ ❡♥s✉r❡ t❤❡ ❡q✉❛❧✐t② ✐♥ t❤❡ ❋r❡❝❤❡t s✉❜❣r❛❞✐❡♥t ✐♥✲
❝❧✉s✐♦♥ ✭✸✳✻✮✳ ❋♦r ❝♦♥✈❡♥✐❡♥❝❡✱ ❞❡♥♦t❡ ❜② ❵❵❘❍❙✬✬ ❛♥❞ ❵❵▲❍❙✬✬ t❤❡ ❡①♣r❡ss✐♦♥s st❛♥❞✐♥❣
♦♥ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ❛♥❞ ❧❡❢t✲❤❛♥❞ s✐❞❡ ♦❢ ✐♥❝❧✉s✐♦♥ ✭✸✳✻✮✱ r❡s♣❡❝t✐✈❡❧②✳
❊①❛♠♣❧❡ ✸✳✻✳
✭❝❢✳ ❬✷✱ ❊①❛♠♣❧❡ ✸✳✹❪✮✳ ▲❡t
X=R, Y =R2
❛♥❞
x= 0, y = (0,0)
✳ ❈♦♥s✐❞❡r
t❤❡ ♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥
µ(.)
✐♥ ✭✶✳✷✮ ✇✐t❤
ϕ(x, y) = −y2, y = (y1, y2)∈G(x)
✱ ✇❤❡r❡
G(x) := ny= (y1, y2)∈R2|ϕ1(x, y) = y2−y2
160,
ϕ2(x, y) = y2+y2
1−x60o.
❚❤❡♥ ✇❡ ❤❛✈❡
µ(x) =
−x
✐❢
x60
−x
2
♦t❤❡r✇✐s❡
;M(x) = ny= (y1, y2)∈G(x)|y2=
x
✐❢
x60
x
2
♦t❤❡r✇✐s❡
o,
Λ(x, y) = {(t, 1−t)|06t61}.
❋✉rt❤❡r♠♦r❡✱
∇ϕ1(x, y) = (0,0,1),∇ϕ2(x, y) = (−1,0,1)
❛r❡ ❧✐♥❡❛r❧② ✐♥❞❡♣❡♥❞❡♥t✳ ❍❡♥❝❡ ❘❍❙❂
[−1,0]
✳ ❖♥ t❤❡ ♦t❤❡r ❤❛♥❞✱ ❛ ❞✐r❡❝t ❝♦♠♣✉t❛t✐♦♥
❜❛s❡❞ ♦♥ ✭✷✳✶✮ ❣✐✈❡s ▲❍❙❂
[−1,−1
2],
✐✳❡✳✱ ✐♥❝❧✉s✐♦♥ ✭✸✳✻✮ ✐s str✐❝t❧②✳ ❖❜s❡r✈❡ t❤❛t t❤❡ s♦❧✉✲
t✐♦♥ ♠❛♣
M(.)
❛s ❛❜♦✈❡ ❞♦❡s ♥♦t ❛❞♠✐t ❛♥② ✉♣♣❡r ▲✐♣s❝❤✐t③✐❛♥ s❡❧❡❝t✐♦♥ ❛t
(x, y)
✳ ❚❤✐s
❡①❛♠♣❧❡ s❤♦✇s t❤❛t t❤❡ ❧❛tt❡r ❛ss✉♠♣t✐♦♥ ✐s ❡ss❡♥t✐❛❧ ❢♦r t❤❡ ✈❛❧✐❞✐t② ♦❢ t❤❡ ❡q✉❛❧✐t②
✐♥ ✭✸✳✻✮ ❜② ❚❤❡♦r❡♠ ✸✳✹✳
❊①❛♠♣❧❡ ✸✳✼✳
▲❡t
X=Y=R
❛♥❞
x=y= 0
✳ ❈♦♥s✐❞❡r t❤❡ ♠❛r❣✐♥❛❧ ❢✉♥❝t✐♦♥
µ(.)
✐♥
✭✶✳✷✮ ✇✐t❤
ϕ(x, y) = (x−y2)2, G(x) = {y∈R|ϕ1(x, y) = −(1 + y)260}.
❖♥❡ ❝❛♥ ❡❛s✐❧② ❞❡❞✉❝❡ ❢r♦♠ ✭✶✳✷✮ ❛♥❞ ✭✶✳✸✮ t❤❛t
µ(x) = (x2
✐❢
x60
0
♦t❤❡r✇✐s❡
;M(x) = ({0}
✐❢
x60
{−√x, √x}
♦t❤❡r✇✐s❡ ❀
Λ(x, y) = {0}.
❋✉rt❤❡r♠♦r❡✱
∇ϕ1(x, y) = (0,−2) 6= (0,0)
✳ ❍❡♥❝❡ ❘❍❙❂
{0}
✳ ❇❡s✐❞❡s✱ ▲❍❙❂
ˆ
∂µ(0) = {0}
✳
❚❤✉s ✭✸✳✻✮ ❤♦❧❞s ❛s ❡q✉❛❧✐t② ❛❧t❤♦✉❣❤ t❤❡ s♦❧✉t✐♦♥ ♠❛♣
M(.)
❞♦❡s ♥♦t ❛❞♠✐t ❛♥② ✉♣♣❡r
▲✐♣s❝❤✐t③✐❛♥ s❡❧❡❝t✐♦♥ ❛t
(x, y)
✳ ❲❡ ❤❛✈❡ s❡❡♥ t❤❛t t❤❡ ✉♣♣❡r ▲✐♣s❝❤✐t③✐❛♥ ❛ss✉♠♣t✐♦♥
✐s s✉❢❢✐❝✐❡♥t ❜✉t ♥♦t ♥❡❝❡ss❛r② ❢♦r t❤❡ ❡q✉❛❧✐t② ❛ss❡rt✐♦♥ ♦❢ ❚❤❡♦r❡♠ ✸✳✹✳

