intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo khoa học: "một số vấn đề về phản ánh tiền trả lãi vốn vay trong công thức tính các chỉ tiêu động của dự án đầu tư"

Chia sẻ: Nguyễn Phương Hà Linh Nguyễn Phương Hà Linh | Ngày: | Loại File: PDF | Số trang:5

58
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong phân tích và đánh giá dự án đầu t- sử dụng vốn vay, tiền trả lãi vay hàng năm là một khoản tiền mà chủ dự án thực tế phải chi trả. Nh-ng khi tính các chỉ tiêu động của dự án ta không đ-ợc tính khoản này vào chi phí [6; 1, tr. 304-310; 2, tr. 201-203; 7, tr. 100; 8, tr.165].

Chủ đề:
Lưu

Nội dung Text: Báo cáo khoa học: "một số vấn đề về phản ánh tiền trả lãi vốn vay trong công thức tính các chỉ tiêu động của dự án đầu tư"

  1. mét sè vÊn ®Ò vÒ ph¶n ¸nh tiÒn tr¶ l·i vèn vay trong c«ng thøc tÝnh c¸c chØ tiªu ®éng cña dù ¸n ®Çu t− TS. bïi ngäc toµn ThS. NguyÔn H÷u V−¬ng Bé m«n Kinh tÕ x©y dùng Khoa VËn t¶i - Kinh tÕ - Tr−êng §HGTVT Tãm t¾t: Trong ph©n tÝch vμ ®¸nh gi¸ dù ¸n ®Çu t− sö dông vèn vay, tiÒn tr¶ l·i vay hμng n¨m lμ mét kho¶n tiÒn mμ chñ dù ¸n thùc tÕ ph¶i chi tr¶. Nh−ng khi tÝnh c¸c chØ tiªu ®éng cña dù ¸n ta kh«ng ®−îc tÝnh kho¶n nμy vμo chi phÝ [6; 1, tr. 304-310; 2, tr. 201-203; 7, tr. 100; 8, tr.165]. Bμi b¸o ®Ò xuÊt ph−¬ng ph¸p vËn dông c¸c c«ng thøc tÝnh c¸c chØ tiªu ®éng cña dù ¸n cã thÓ hiÖn tiÒn tr¶ l·i vèn vay. Summary: In analysing and appraising investment projects, interest payments are the money that the project owner has to pay in fact. But, in determining changing indexes of investment projects, we can not consider the interest payments as costs [6; 1, tr. 304-310; 2, tr. 201-203; 7, tr. 100; 8, tr.165]. The article will put forward the case to handle formulas to determine changing indexes of investment projects executing the interest payments. i. Néi dung Trong ph©n tÝch dù ¸n ®Çu t− cã sö dông vèn vay, tiÒn tr¶ l·i lµ mét kho¶n chi phÝ ®−îc khÊu trõ khi tÝnh thuÕ thu nhËp. §ång thêi kho¶n tiÒn nµy l¹i kh«ng ®−îc tÝnh vµo dßng chi khi tÝnh c¸c chØ tiªu cña dù ¸n nh− NPW; B/C; IRR... Kho¶n tiÒn l·i nµy cÇn ph¶i ®−îc thÓ hiÖn nh− sau: B¶ng 1 N¨m Doanh Chi phÝ KhÊu Thu Nî TiÒn ThuÕ L·i sau Thu TiÒn Nî thu thuÕ (ch−a nhËp thø vËn hµnh hao nhËp n¨m l·i thu tr¶ chuyÓn trõ tiÒn tr¶ hoµn kh«ng kÓ (kh«ng kÓ tr−íc tr−íc ph¶i nhËp vèn n¨m l·i vay) thuÕ VAT khÊu hao) thuÕ chuyÓn tr¶ vèn gèc sau vµ sang l·i vay L B CK KH EBIT I TN N TVG 1 2 3 4= 1-2-3 5 6=5x 7=(4-6)x 8= 4-7 9= 8+3 10=9-6 11= 5-10 l·i suÊt thuÕ suÊt 1 2 Ghi chó: trong b¶ng nµy ch−a tÝnh ®Õn thuÕ tiªu thô ®Æc biÖt, khÊu hao söa ch÷a lín, c¸c lo¹i tiÒn ph¹t (nÕu cã)...
  2. Ta cã c«ng thøc: n m V = SV + ∑ KHt = ∑ TVGt (1) t =1 t =1 Trong ®ã: n lµ thêi h¹n khÊu hao; m lµ thêi h¹n tr¶ nî cña dù ¸n; SV lµ gi¸ trÞ cßn l¹i. Vèn ®Çu t− ban ®Çu V hoµn toµn lµ vèn vay. Nh− vËy, tæng kh¶ n¨ng tr¶ nî lín nhÊt trong n¨m cña dù ¸n chÝnh lµ thu nhËp hoµn vèn N vµ b»ng khÊu hao KH céng l·i sau thuÕ (ch−a trõ tiÒn tr¶ l·i vay) L: N = B – CK – TN = KH + L (2) L−îng tiÒn nµy nÕu ®em thanh to¸n tiÒn l·i ph¶i tr¶ trong n¨m I th× phÇn cßn l¹i TVG cã thÓ dïng ®Ó tr¶ vèn gèc. Do ®ã, nÕu tÊt c¶ thu nhËp hoµn vèn ®em tr¶ nî hÕt th× ta cã c«ng thøc: KHt + Lt = It + TVGt víi t = 1, 2, 3, ..., m-1 (3) C¸c kho¶n tiÒn V ë thêi ®iÓm 0, TVG vµ I ë c¸c thêi ®iÓm tiÕp theo nÕu nh×n nhËn ë c¸c gãc ®é kh¸c nhau sÏ cã ý nghÜa kh¸c nhau: - T¹i thêi ®iÓm 0, kho¶n tiÒn V nh×n tõ gãc ®é chñ dù ¸n lµ thu trong ho¹t ®éng vay vèn vµ chi trong ho¹t ®éng ®Çu t− vµo dù ¸n, nh×n tõ gãc ®é chñ nî th× ®©y lµ mét kho¶n chi. - C¸c kho¶n tiÒn TVG, I ë c¸c thêi ®iÓm tiÕp theo, nh×n tõ gãc ®é chñ dù ¸n lµ c¸c kho¶n chi, nh×n tõ gãc ®é chñ nî l¹i lµ c¸c kho¶n thu. CÇn ph©n biÖt c¸c dßng tiÒn trªn nh− sau: B¶ng 2 C¸c n¨m t =0 t =1 t =2 ... t=m t=m+1 ... t=n Nh×n tõ gãc ®é cña chñ dù ¸n Dßng tiÒn Chi V thu chi cho KH1 KH2 ... KHm KHm+1 ... KHn+SV ho¹t ®éng Thu L1 L2 ... Lm Lm+1 ... Ln cña dù ¸n Dßng tiÒn Thu V thu chi cho TVG1 TVG2 ... TVGm qu¸ tr×nh vay Chi I1 I2 ... Im vèn Nh×n tõ gãc ®é cña chñ nî Chi V TVG1 TVG2 ... TVGm Thu I1 I2 ... Im
  3. Nh×n vµo b¶ng trªn vµ ®¼ng thøc (1) cã thÓ thÊy L lµ kho¶n l·i cña chñ dù ¸n cßn I lµ tiÒn l·i cña chñ nî (nhµ ®Çu t− tµi chÝnh). Ta cã thªm c«ng thøc: V = ∑ (KHt + Lt ) = ∑ (TVGt + It ) 1 1 n m (4) (1+ IRR ) (1+ i)t t t =1 t =1 trong ®ã i lµ chi phÝ sö dông vèn. Trªn ®©y lµ c¸ch tÝnh vµ ph©n biÖt c¸c dßng tiÒn cña dù ¸n ®Çu t− sö dông vèn vay, cßn c¸ch tÝnh c¸c chØ tiªu ®éng trong tr−êng hîp nµy? C«ng thøc tÝnh NPW cã thÓ viÕt d−íi d¹ng: 1⎤ ⎡n SV + NPW = − V + ⎢ ∑ Nt t⎥ (5) ⎢t =1 (1+ r ) ⎥ (1+ r ) n ⎦ ⎣ hoÆc xuÊt ph¸t tõ c«ng thøc (2): ⎡n 1⎤ SV NPW = - V + ⎢ ∑ (Bt − CK t − TNt ) + t⎥ (6) (1 + r ) ⎦ (1 + r )n ⎣ t =1 1⎤ ⎡n = − V + ⎢ ∑ (KHt + Lt ) SV + t⎥ (7) (1+ r ) ⎥ (1+ r )n ⎢ t =1 ⎦ ⎣ trong ®ã r lµ suÊt chiÕt khÊu. C«ng thøc tÝnh tû sè thu chi B/C cã d¹ng: ⎡n 1⎤ SV + ⎢ ∑ Bt t⎥ (1+ r ) ⎥ (1+ r )n B= ⎢ t =1 ⎣ ⎦ (8) C − V + ∑ (CK t + TNt ) 1 n (1+ r )t t =1 Trong c¸c c«ng thøc trªn kh«ng cã thµnh phÇn tiÒn tr¶ l·i vèn vay v× vèn ®Çu t− ban ®Çu V ®−îc thÓ hiÖn ë thêi ®iÓm t = 0. Tuy nhiªn, xuÊt ph¸t tõ c«ng thøc (4): V = ∑ (TVGt + It ) 1 m (1+ i)t t =1 ta còng cã thÓ kh«ng ph¶n ¸nh vèn ®Çu t− ban ®Çu V ë thêi ®iÓm t = 0 nh− thãi quen mµ thay vµo ®ã lµ c¸c kho¶n tiÒn tr¶ vèn gèc TVG vµ l·i I ë c¸c thêi ®iÓm chñ dù ¸n chi tr¶ cho chñ nî. Lóc nµy c«ng thøc (7) cã thÓ viÕt l¹i thµnh: ⎡n 1⎤ NPW = − ∑ (TVGt + It ) + ⎢ ∑ (Bt − CK t − TNt ) 1 SV m ⎥+ (9) (1+ i) ⎢t =1 (1+ r ) ⎥ (1+ r )n t t t =1 ⎣ ⎦
  4. Trong c«ng thøc trªn râ rµng ta ®· t¸ch b¹ch ho¹t ®éng s¶n xuÊt kinh doanh (thµnh phÇn trong ngoÆc vu«ng) vµ c¸c ho¹t ®éng kh¸c (ho¹t ®éng tµi chÝnh, ho¹t ®éng bÊt th−êng) cña dù ¸n. NhËn thÊy r»ng c¸c kho¶n TVG vµ I b»ng 0 trong thêi ®o¹n tõ m ®Õn n, v× vËy nÕu lÊy suÊt chiÕt khÊu b»ng chi phÝ sö dông vèn, hay cho r = i th× c«ng thøc (9) cã thÓ viÕt l¹i thµnh: ⎡n 1⎤ NPW = ⎢ ∑ (Bt − CK t − TNt − TVGt − It ) SV + t⎥ (10) (1+ i) ⎥ (1+ i)n ⎢t =1 ⎣ ⎦ HoÆc: ⎡n 1⎤ NPW = ⎢ ∑ (KHt + Lt − TVGt − It ) SV ⎥+ (10*) (1+ i) ⎥ (1+ i)n t ⎢ t =1 ⎣ ⎦ C«ng thøc (9) vµ (10) lµ c¸ch tÝnh NPW cho tr−êng hîp vèn vay ban ®Çu ®−îc tr¶ dÇn qua c¸c n¨m. Trong tr−êng hîp vèn gèc ®−îc tr¶ mét lÇn t¹i thêi ®iÓm m nµo ®ã hay TVGt = 0 víi t = 1, 2, ..., m-1, vµ TVGm = V th× c«ng thøc (9) cã thÓ viÕt thµnh: ⎡m 1⎤ ⎡n 1⎤ + ⎢ ∑ (Bt − CK t − TNt ) V SV NPW = − ⎢ ∑ It ⎥− ⎥+ (11) ⎢ t =1 (1+ i) ⎥ (1+ i) (1+ r ) ⎥ (1+ r )n t m t ⎢ t =1 ⎣ ⎦ ⎣ ⎦ C«ng thøc (10) trë thµnh: ⎡n 1⎤ + ⎢ ∑ (Bt − CK t − TNt − It ) V SV NPW = − + (12) t⎥ (1+ i) (1+ i) ⎥ (1+ i)n m ⎢ t =1 ⎣ ⎦ Hay: ⎡n 1 ⎤ SV + ⎢ ∑ (Nt − It ) V NPW = − ⎥+ (13) (1+i) (1+ i)t ⎦ (1+i)n m ⎣ t =1 ii. KÕt luËn So s¸nh c«ng thøc (13) cã thÓ hiÖn tiÒn tr¶ l·i vay hµng n¨m vµ c«ng thøc (5) kh«ng thÓ tiÒn tr¶ l·i vay hµng n¨m ta thÊy nÕu muèn thÓ hiÖn tiÒn tr¶ l·i vay trong c«ng thøc tÝnh c¸c chØ tiªu ®éng cña dù ¸n ®Çu t− cã sö dông vèn vay th× tiÒn tr¶ vèn gèc V kh«ng ®−îc thÓ hiÖn ë thêi ®iÓm t = 0 nh− thãi quen mµ cÇn ph¶i ®−îc thÓ hiÖn ë thêi ®iÓm chñ dù ¸n thùc tr¶ vèn gèc cho chñ nî: - Tr−êng hîp vèn gèc ®−îc tr¶ mét lÇn t¹i mét thêi ®iÓm m nµo ®ã ta cã thÓ vËn dông c«ng thøc (13); - Tr−êng hîp vèn gèc ®−îc tr¶ dÇn trong m n¨m th× cÇn vËn dông c«ng thøc (9), (10) hoÆc c«ng thøc (10*). Tµi liÖu tham kh¶o
  5. [1]. GS. TSKH NguyÔn V¨n Chän. Kinh tÕ ®Çu t− x©y dùng. NXB X©y dùng, n¨m 2003. [2]. Harold Bierman vμ Seymour Smidt. QuyÕt ®Þnh dù to¸n vèn ®Çu t−. NXB Thèng kª, n¨m 2001. [3]. GS. Ph¹m Phô. Kinh tÕ - Kü thuËt. Ph©n tÝch vµ lùa chän dù ¸n ®Çu t−. Tr−êng §¹i häc B¸ch khoa Tp. HCM, 8/1993. [4]. GS. VS. TSKH Volkov. B. A. Ekonomichexkaia effektivnoxt invextixyi na gielejnom tranxporte v uxloviax r−nka. NXB Mat-xc¬-va “Tranxport” 1996. [5]. GS. TSKH NguyÔn V¨n Chän. Ph−¬ng ph¸p lËp dù ¸n ®Çu t− trong ngµnh x©y dùng. NXB X©y dùng, n¨m 1998. [6]. TS. Bïi Ngäc Toμn. T¹p chÝ khoa häc GTVT. Sè 1 - th¸ng 11/2002. [7]. TS. L−u ThÞ H−¬ng. Gi¸o tr×nh tµi chÝnh doanh nghiÖp. NXB gi¸o dôc, n¨m 1998. [8]. NguyÔn H¶i S¶n. Qu¶n trÞ tµi chÝnh doanh nghiÖp. NXB Thèng kª, n¨m 2001
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2