❱Ò ♠ét ❞➵♥❣ ❤é✐ ❝ñ❛ ❞➲
✈➭ ❝❤✉ç✐ ♥❤✐Ò✉ ❝❤Ø ❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣ ♥❤✐➟♥
◆❣✉②Ô♥ ❱➝♥ ◗✉➯♥❣
✭❛✮
➜➷♥❣ ❱➝♥ ❍➯✐
✭❜✮
◆❣✉②Ô♥ ❚❤Þ ❚❤Õ
✭❛✮
❚ã♠ t➽t✳
●✐➯
N
❧➭ t❐♣ ❤î♣ ❝➳ ♥❣✉②➟♥ ❞➢➡♥❣✱
d
❧➭ ♠ét ♥❣✉②➟ ❞➢➡♥❣
Nd={n= (n1, n2, ..., nd) : niN, i = 1,2, ..., d}.
✈➭
{X(n), n Nd}
❧➭ ❞➲②
d
✲❝❤Ø ❝➳ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥✳ ▼ô❝ ➤Ý❝❤ ❝ñ ❜➭✐ ❜➳♦
♥➭② ❧➭ t❤✐Õt ❧❐♣ ét tÝ♥❤ ❝❤✃t ❝➡ ❜➯♥ Ò ❤é✐ ❝ñ❛ ❞➲②
{X(n), n Nd}
✈➭ ❝❤✉ç✐
PnNdX(n)
❦❤✐
max
16i6dni=ni
✶✳
▼ë ➤➬✉
●✐➯
d
❧➭ ♠ét ♥❣✉②➟♥ ❞➢➡♥❣✱ ❦ý ❤✐Ö✉
Nd={n= (n1, n2, ..., nd) : niN, i = 1,2, ..., d}.
❚r♦♥❣
Nd
q✉❛♥ ❤Ö t❤ø ➤➢î❝ ➤Þ♥❤ ♥❣❤Ü❛ ♥❤➢ s❛✉✿
❱í✐
m= (m1, m2, .., md), n = (n1, n2, ..., nd)
❧➭ ❤❛✐ ♣❤➬♥ ❝ñ❛
Nd
❦❤✐ ➤ã
m6n
➤✳♥
mi6ni, i = 1, . . . , d.
●ä✐ t❐♣ ❝♦♥ ❝ñ❛
Nd
♠➭ ✈í✐ ♠ç✐ ♣❤➬♥ ❝ñ❛ ♥ã ❝➳❝ ❝❤Ø ➤Ò ❜➺♥ ♥❤❛✉ ❧➭
Id={i=
(i, i, . . . , i) : iN}.
❱í✐ ♠ç✐
n= (n1, n2, . . . , nd)
➤➷t
ni= max
16i6dni;ni= min
16i6dni
✈➭
|n|=n1.n2. . . nd.
❈➳❝ ❞➲② ✈➭ ❝❤✉ç ♠➭ t❐♣ ❝❤Ø ❧➭
Nd
➤➢î❝ ❣ä✐ ❧➭ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø sè✳
❚r♦♥❣ t❤ê✐ ❣✐ ❣➬♥ ➤➞②✱ ❝ã ♥❤✐Ò✉ ❜➭✐ ❜➳♦ ♥❣❤✐➟♥ ❝ø✉ ✈Ò ❣✐í✐ ❤➵♥ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç
d
❝❤Ø sè ❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥ ✭①❡♠ ❝❤➻♥❣ ❤➵♥ ❬✸❪✱ ❬✹❪✱ ❬✺❪ ❬✻❪✱ ❬✽❪✮✳ ❚✉② ♥❤✐➟♥✱
❝❤➢❛ ❝ã ❜➭✐ ➳♦ ♥➭♦ tr×♥❤ ❜➭② ✈➭ ❝❤ø♥❣ ♠✐♥❤ ét ❝➳❝❤ ❝❤✐ t✐Õt ❝❤➷t ❝❤Ï ❝➳❝ tÝ♥❤ ❝❤✃t
❝➡ ❜➯♥ ❝ñ❛ ♦➵✐ ❣✐í✐ ❤➵♥ ♥➭②✳
➜è✐ ✈í✐ ❧♦➵✐ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø sè✱ ♥❣➢ê✐ t❛ t❤➢ê♥❣ q✉❛♥ t➞♠ ♥❣❤✐➟♥ ❝ø✉ ❣✐í✐ ❤➵♥
❝ñ❛ ❝❤ó♥❣ ❦❤✐
ni
❤♦➷❝ ❦❤✐
ni
❈➯ ❛✐ ❞➵♥❣ ✐í✐ ❤➵♥ ♥➭② ➤Ò✉ ❧➭ ♠ë ré♥❣
❝ñ❛ ❣✐í✐ ❤➵ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐ ♠ét ❝❤Ø t❤➠♥❣ t❤➢ê♥❣✳ ❙ù ❤é✐ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø ❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥ ✭➜▲◆◆✮ ❦❤✐
ni
➤➲ ➤➢î❝ ♥❣❤✐➟♥ ❝ø✉ tr♦♥❣ ❬✶❪✳
◆❤❐♥ ❜➭✐ ♥❣➭② ✸✵✴✶✵✴✷✵✵✻✳ ❙ö❛ ❤÷❛ ①♦♥❣ ♥❣➭② ✷✾✴✶✷✴✷✵✵✻✳
▼ô❝ ➤Ý❝❤ ❝❤Ý♥❤ ❝ñ❛ ❜➭✐ ❜➳♦ ♥➭② ❧➭ ❤✐➟♥ ❝ø✉ ❤é✐ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø ❝➳❝
➜▲◆◆ ❦❤✐
ni
❈❤ó♥❣ t➠✐ ❝❤Ø r❛ r➺♥❣ ♥❤✐Ò✉ tÝ♥❤ ❝❤✃t ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐ ❝➳❝
➜▲◆◆ ✈➱♥ ❝ß♥ ➤ó♥❣ ➤è ✈í✐ ❞➲② ✈➭ ❝❤✉ç✐ ♥❤✐Ò✉ ❝❤Ø sè✳ ▼➷t ❦❤➳❝✱ ❝ã ♠ét tÝ♥❤ ❝❤✃t
❦❤➠♥❣ ❝ß♥ ➤ó♥❣ ♥÷❛✳ ❈➳❝ ♣❤Ð♣ ❝❤ø♥❣ ♠✐♥❤ ❝➳❝ tÝ♥❤ ❝❤✃t ❝ò♥❣ ❝ã t❤❛② ➤æ✐ ♥❤✃t
➤Þ♥❤✱ ❞♦ q✉❛♥ ❤Ö t❤ø tr➟♥
Nd(d > 1)
❦❤➠♥❣ ♣❤➯✐ ❧➭ q✉❛♥ ❤Ö t❤ø t✉②Õ♥ tÝ♥❤✳
➜Ó ❧➭♠ ❝➡ së✱ tr➢í❝ ❤Õt ❝❤ó♥❣ t❛ ❝➬♥ ♥❣❤✐➟♥ ❝ø✉ ✈Ò ❤é✐ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø sè✳
✷✳
❙ù ❤é✐ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø
➜Þ♥❤ ♥❣❤Ü❛
✷✳✶
●✐➯
{x(n), n Nd}
❧➭ ❞➲②
d
❝❤Ø sè✳ ❚❛ ♥ã✐ ❞➲②
{x(n), n Nd}
❤é✐ tí✐
xR
❦❤✐
ni
✭t➢➡♥❣ ø♥❣ ❦❤✐
ni )
♥Õ✉ ✈í✐ ♠ä✐
ε > 0
tå♥
t➵✐
n0N
✭t➢➡♥❣ ø♥❣ tå♥ t➵✐
n0Nd
s❛♦ ❝❤♦ ✈í✐ ♠ä✐
n= (n1, n2, . . . , nd)Nd
♠➭
nin0
✭t➢➡♥❣ ø♥❣
nn0
t❤×
|x(n)x|< ε
❑ý ❤✐Ö✉
lim
ni→∞ x(n) = x
✭t➢➡♥❣ ø♥❣
lim
ni→∞ x(n) = x).
➜Þ♥❤ ♥❣❤Ü❛
✷✳✷
●✐➯
{x(n), n Nd}
❧➭ ❞➲②
d
❝❤Ø sè✳ ❚❛ ♥ã✐ ❞➲②
{x(n), n Nd}
❤é✐ tí✐
xR
❦❤✐
|n|
♥Õ✉ ✈í✐ ♠ä✐
ε > 0
tå♥ t➵✐
n0N
s❛♦ ❝❤♦ ✈í✐ ♠ä✐
n= (n1, n2, . . . , nd)Nd
♠➭
|n| n0
t❤×
|x(n)x|< ε.
❑ý ❤✐Ö
lim
|n|→∞ x(n) = x.
◆❤❐♥ ①Ðt✿ ❉Ô ♥❤❐♥ t❤✃② r➺♥❣ ♥Õ✉
nn0
t❤×
|n| |n0|
✈➭
ni
❦❤✐ ✈➭ ❝❤Ø ❦❤✐
|n|
❉♦ ➤ã ❣✐÷❛ ❤❛✐ ➤Þ♥❤ ♥❣❤Ü❛ tr➟♥ ❝ã ♠è✐ q✉❛♥ ❤Ö s❛✉✿
lim
|n|→∞ x(n) = xlim
ni→∞ x(n) = xlim
ni→∞ x(n) = x.
➜Þ♥❤ ♥❣❤Ü❛
✷✳✸
●✐➯
{x(n), n Nd}
❧➭ ❞➲②
d
❝❤Ø sè✳ ❑❤✐ ➤ã
PnNdx(n) (1)
➤➢î❝ ❣ä✐ ❧➭ ❝❤✉ç✐
d
❝❤Ø sè✳
➜➷t
S(n) = Pm6nx(m)
S(n)
➤➢î❝ ❣ä✐ ❧➭ tæ♥❣ r✐➟♥❣ t❤ø
n
❝ñ❛ ❝❤✉ç✐ ✭✶✮✳ ❚❛ ♥ã✐
❝❤✉ç✐ ✭✶✮ ❤é✐ ❦❤✐
ni
♥Õ✉ ❞➲②
{S(n), n Nd}
❤é✐ ❦❤✐
ni
✈➭
S=
lim
ni→∞ S(n) = PnNdx(n)
➤➢î❝ ❣ä✐ ❧➭ tæ♥❣ ❝ñ❛ ❝❤✉ç✐ ✭✶✮
r(n) = SS(n) = X
m:mn
x(m)
➤➢î❝ ❣ä✐ ❧➭ ♣❤➬♥ ❞➢ t❤ø
n
❝ñ❛ ❝❤✉ç✐ ✭✶✮✳
❘â r➭♥❣✱ ♥Õ✉ ❝❤✉ç ✭✶✮ ❤é✐ t❤×
lim
ni→∞ r(n) = 0
❚õ ❝➳❝ ➤Þ♥❤ ♥❣❤Ü tr➟♥✱ t❛ ❞Ô ❞➭♥❣ ❝❤ø♥❣ ♠✐♥❤ ➤➢î❝ ❝➳❝ ➤Þ♥❤ ❧ý s❛✉✳
➜Þ♥❤ ❧ý
✷✳✹
●✐➯
{x(n), n Nd}
✈➭
{y(n), n Nd}
❧➭ ❝➳❝ ❞➲②
d
❝❤Ø sè✳
✭✐✮ ◆Õ✉
x(n)x
✈➭
y(n)y
❦❤✐
ni (ni )
t❤× tæ♥❣
x(n) + y(n)x+y
❦❤✐
ni (ni ).
✭✐✐✮ ◆Õ✉
x(n)x
❦❤✐
ni (ni )
t❤×
|x(n)| |x|
❦❤✐
ni (ni ).
✭✐✐✐✮ ◆Õ✉
x(n)x
❦❤✐
ni (ni )
t❤×
λx(n)λx
❦❤✐
ni (ni )
✈í✐
λC.
➜Þ♥❤ ý
✷✳✺
●✐➯
PnNdx(n)
❤é✐ ➤Õ♥
xR
PnNdy(n)
❤é✐ tô ➤Õ♥
yR
❦❤✐
ni
❑❤ ➤ã
✭✐✮ ❈❤✉ç
PnNd(x(n) + y(n))
❤é✐ ➤Õ♥
x+y
❦❤✐
ni .
✭✐✐✮ ❈❤✉ç
PnNdλx(n), λ C
❤é✐ ➤Õ♥
λx
❦❤✐
ni .
➜Þ♥❤ ♥❣❤Ü❛
✷✳✻
●✐➯
{x(n), n Nd}
❧➭ ❞➲②
d
❝❤Ø sè✳ ❚❛ ♥ã✐ ❞➲②
{x(n), n Nd}
❜Þ ❝❤➷♥
♥Õ✉ tå♥ t➵✐
M > 0
s❛♦ ❝❤♦
|x(n)|6M,
✈í✐ ♠ä✐
nNd.
➜Þ♥❤ ❧ý s❛✉ ➤➞② ❝ã t❤Ó ➤➢î❝ ❝❤ø♥❣ ♠✐♥❤ ❤♦➭♥ t♦➭♥ t➢➡♥❣ ♥❤➢ tr➢ê♥❣ ❤î♣ ❞➲②
♠ét ❝❤Ø sè✳
➜Þ♥❤ ý
✷✳✼
●✐➯
{x(n), n Nd}
❧➭ ❞➲②
d
❝❤Ø sè✳ ◆Õ✉ ❞➲②
{x(n), n Nd}
❤é✐
tí✐
xR
❦❤✐
ni
t❤×
{x(n), n Nd}
❜Þ ❝❤➷♥✳
◆❤❐♥ ①Ðt✿ ◆Õ✉ ❞➲②
{x(n), n Nd}
❤é✐ tí✐
xR
❦❤✐
ni
t❤×
{x(n), n Nd}
❝❤➢❛ ❝❤➽❝ ➤➲ ❜Þ ❝❤➷♥
❈❤➻♥❣ ❤➵♥ ①Ðt ❞➲② ❤❛✐ ❝❤Ø
{x(m, n)}
✈í✐
x(m, n) = (m,
♥Õ✉
n= 1
0,
♥Õ✉
n6= 1.
❑❤✐ ➤ã r➭♥❣
x(m, n)0
❦❤✐
mn
♥❤➢♥❣ ❞➲② ➤ã ❦❤➠♥❣ ❜Þ ❝❤➷♥✳
❚➢➡♥❣ ♥❤➢ tr➢ê♥❣ ❤î♣ ❞➲② ♠ét ❝❤Ø sè✱ ♥ã✐ ❝❤✉♥❣ ♠ét ❞➲②
d
❝❤Ø ❜Þ ❝❤➷♥ t❤×
❝❤➢❛ ❝❤➽❝ ➤➲ ❤é✐ tô✳ ❚✉② ♥❤✐➟♥✱ t❛ ❝ã Þ♥❤ ❧ý s❛✉✿
➜Þ♥❤ ❧ý
✷✳✽
●✐➯
{x(n), n Nd}
❧➭ ❞➲② ❜Þ ❝❤➷♥✳ ❑❤✐ ➤ã ♥Õ✉ ❞➲②
{x(n), n Nd}
➤➡♥ ➤✐Ö✉ t➝♥❣
❣✐➯♠
t❤❡♦ ♥❣❤Ü❛
x(n)x(m)
x(n)6x(m)
❦❤✐
ni mi
t❤×
{x(n), n Nd}
❤é✐ ❦❤✐
ni
✈➭
lim
ni→∞ x(n) = lim
i→∞ x(i) (iId).
❈❤ø♥❣ ♠✐♥❤✳
●✐➯
{x(n), n Nd}
➤➡♥ ➤✐Ö✉ t➝♥❣✳ ●ä✐
{x(i), i Id}
❧➭ ❞➲② ❝♦♥ ❝ñ❛
❞➲②
x(n), n Nd}
{x(n), n Nd}
❧➭ ❞➲② ➤➡♥ ➤✐Ö✉ t➝♥❣ ✈➭ ❜Þ ❝❤➷♥ ♥➟♥
{x(i), i Id}
❧➭ ❞➲② ♠ét ❝❤Ø ➤➡♥ ➤✐Ö✉ t➝♥❣ ✈➭ ❜Þ ❝❤➷♥ ♥➟♥ ❤é✐ ✈Ò
x
♥➭♦ ➤ã ❦❤✐
i
❚❛ ❝❤ø♥❣
♠✐♥❤
{x(n), n Nd}
❤é✐ ✈Ò
x
❦❤✐
ni
❚❤❐t ✈❐②✱ ✈í✐ ♠ä✐
ε > 0
tå♥ t➵✐
n0N
s❛♦ ❝❤♦
06xx(i)< ε (iId)
✈í✐ ♠ä✐
in0
❑❤✐ ➤ã✱ ✈í ♠ä✐
n
♠➭
ni=k > n0
t❛ ❝ã
x(n0)6x(n)6x(k),(n0, k Id)
❉♦ ➤ã
06xx(k)6xx(n)6xx(n0)< ε.
❚õ ➤ã s✉② r❛
lim
ni→∞ x(n) = x= lim
i→∞ x(i) (iId).
◆Õ✉
{x(n), n Nd}
➤➡♥ ➤✐Ö✉ ❣✐➯♠ t❤×
{−x(n), n Nd}
➤➡♥ ➤✐Ö✉ t➝♥❣✳ ❙ö ❞ô♥❣ ❦Õt q✉➯
✈õ❛ ❝❤ø♥❣ ♠✐♥❤ ✈➭ ➤Þ♥❤ ❧ý ✷✳✹ t❛ ➤➢î❝ ➤✐Ò✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳
➜Þ♥❤ ♥❣❤Ü
✷✳✾
❉➲②
{x(n), n Nd}
➤➢î❝ ❣ä✐ ❧➭
❞➲② ❈❛✉❝❤②
❦❤✐
ni
♥Õ✉
✈í✐ ♠ä✐
ε > 0
tå♥ t➵✐
noN
s❛♦ ❝❤♦ ✈í✐ ♠ä✐
m, n Nd
♠➭
min0,nin0
t❤×
|x(m)x(n)|< ε.
➜Þ♥❤ ❧ý
✷✳✶✵
➜Ó ❞➲②
{x(n), n Nd}
❤é✐ ➤Õ♥
xR,
❦❤✐
ni ,
➤✐Ò✉ ❦✐Ö♥ ❝➬♥
✈➭ ➤ñ ❧➭
{x(n), n Nd}
❧➭ ❞➲② ❈❛✉❝❤②✳
❈❤ø♥❣ ♠✐♥❤✳
➜✐Ò✉ ❦✐Ö♥ ❝➬♥✿ ●✐
{x(n), n Nd}
❤é✐ tí✐ ♣❤➬♥
xR
❦❤✐
ni
✈í✐ ♠ä✐
ε > 0
tå♥ t➵✐
n0N
s❛♦ ❝❤♦ ✈í✐ ♠ä✐
nNd
♠➭
nin0
t❤×
|x(n)x|<ε
2.
❑❤✐ ➤ã ✈í✐ ♠ä✐
m, n Nd
♠➭
min0,nin0
t❛ ❝ã
|x(m)x(n)|=
|(x(m)x)(x(n)x)|6|x(m)x|+|x(n)x|<ε
2+ε
2=ε
➜✐Ò✉ ❦✐Ö♥ ➤ñ✿ ●ä✐
{x(i), i Id}
❧➭ ❞➲② ❝♦♥ ❝ñ❛ ❞➲②
{x(n), n Nd}.
❑❤✐ ➤ã ❞➲②
{x(i), i Id}
①❡♠ ♥❤➢ ❧➭ ❞➲② ❈❛✉❝❤② ♠ét ❝❤Ø ♥➟♥
{x(i), i Id}
❤é✐ ✈Ò
xR
♥➭♦ ➤ã✱ ❦❤✐
i
❑Õt ❤î♣ ✈í✐ ❣✐➯ t❤✐Õt
{x(n), n Nd}
❧➭ ❞➲② ❈❛✉❝❤②✱ s✉② r❛ r➺♥❣
✈í✐ ♠ä✐
ε > 0
tå♥ t➵✐
n0N
s❛♦ ❝❤♦ ✈í✐ ♠ä✐
nNd, i Id
♠➭
nin0, i n0
t❛
❝ã
|x(n)x|6|x(n)x(i)|+|x(i)x|< ε
❱❐②
{x(n), n Nd}
❤é✐ tí✐
xR
❦❤✐
ni .
✸✳
❙ù ❤é✐ ❝ñ❛ ❞➲② ✈➭ ❝❤✉ç✐
d
❝❤Ø
❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥
●✐➯
{X(n), n Nd}
❧➭ ❞➲②
d
❝❤Ø ❝➳❝ ➜▲◆◆ ①➳❝ ➤Þ♥❤ tr➟♥ ❦❤➠♥❣ ❣✐❛♥ ①➳❝ s✉✃t
(Ω,F,P)
➤➡♥ ❣✐ t❛ ✈✐Õt
{X(n)}
❧➭ ❞➲② ➜▲◆◆✳
❉➲② ❝♦♥ ❝ñ❛ ❞➲②
{X(n), n Nd}
❝ã ❝❤Ø t❤✉é❝ t❐♣
Id,
➤➢î❝ ❦ý Ö✉ ❧➭
{X(i), i Id}
❤♦➷❝ ➤➡♥ ❣✐➯♥ ❧➭
{X(i)}.
➜Þ♥❤ ♥❣❤Ü❛
✸✳✶
❚❛ ♥ã✐
✭✐✮ ❉➲②
{X(n)}
❤é✐ t❤❡♦ ①➳❝ s✉✃t
tí✐ ➜▲◆◆
X
❦❤✐
ni ,
♥Õ✉ ✈í✐ ♠ä
ε > 0
t❛
❝ã
lim
ni→∞ P(|X(n)X|> ε) = 0
❦ý ❤✐Ö✉
X(n)P
X
❦❤✐
ni .
✭✐✐✮ ❉➲②
{X(n)}
❤é✐ ❤➬✉ ❝❤➽❝ ❝❤➽♥
✭❤✳❝✳❝✮ tí✐ ➜▲◆◆
X
❦❤✐
ni
♥Õ✉ tå♥ t➵✐
t❐♣
A
❝ã ①➳❝ s✉✃t
0
s❛♦ ❝❤♦
X(n)(ω)X(ω)
❦❤✐
ni
✈í✐ ♠ä✐
ω /A.
❑ý Ö✉
X(n)
❤✳❝✳❝
X,
❦❤✐
ni .
✭✐✐✐✮ ❉➲②
{X(n)}
❤é✐ t❤❡♦ tr✉♥❣ ❜×♥❤ ❝✃♣
p(0 < p < )
tí✐ ➜▲◆◆ ❦❤✐
ni
♥Õ✉
lim
ni→∞ E|X(n)X|p= 0.
❑ý ❤✐Ö✉
X(n)Lp
X,
❦❤✐
ni .
❇æ ➤Ò
✸✳✷
●✐➯
{A(n)}
❧➭ ❞➲②
d
❝❤Ø ❝➳❝ ❜✐Õ♥ ❝è✳ ❑❤✐ ➤ã
✭✐✮ ◆Õ✉
{A(n)}
❧➭ ❞➲② t➝♥❣ t❤❡♦ ♥❣❤Ü❛
A(m)A(n)
❦❤✐
mi6ni
t❤×
P(SnNdA(n)) =
lim
ni→∞ P(A(n)).
✭✐✐✮ ◆Õ✉
{A(n)}
❧➭ ❞➲② ❣✐➯♠ t❤❡♦ ♥❣❤Ü❛
A(m)A(n)
❦❤✐
mi6ni
t❤×
P(TnNdA(n)) =
lim
ni→∞ P(A(n)).
❈❤ø♥❣ ♠✐♥❤✳
✭✐✮ ●✐➯
{A(n)}
❧➭ ❞➲② ❝➳❝ ❜✐Õ♥ ❝è t➝♥❣✳ ä✐ ❞➲② ❝♦♥ ❝ñ❛ ❞➲②
{A(n)}
❝ã t❐♣ ❝❤Ø t❤✉é❝ t❐♣
Id
❧➭
{A(i)}.
❑❤✐ ➤ã t❛ ①❡♠
{A(i)}
♥❤➢ ❧➭ ❞➲② ❜✐Õ♥ ❝è ♠ét ❝❤Ø
✈➭
{A(i)}
❧➭ ❞➲② t➝♥❣✱ ♥➟♥ t❛ ❝ã
P(SiIdA(i)) = lim
i→∞ P(A(i)).
❚❛ ❝❤ø♥❣ ♠✐♥❤
SnNdA(n) = SiIdA(i).
❍✐Ó♥ ♥❤✐➟♥
SnNdA(n)SiIdA(i)
✭✶✮✳ ❚❛ ❝❤ø♥❣ ♠✐♥❤ ➤✐Ò✉ ♥❣➢î❝ ❧➵✐✳ ●✐➯
ωSnNdA(n)
❦❤✐ ➤ã tå♥ t➵✐
n0= (n01, n02, . . . , n0d)Nd
s❛♦ ❝❤♦
ωA(n0).
❈❤ä♥
i0= (m0, m0, . . . , m0)Id
✈í✐
m0= max
16i6dn0i.
❑❤✐ ➤ã r➭♥❣
n0i6mo=m0
♥➟♥
A(n0)A(i0),
s✉② r❛
ωA(i0)
♥➟♥
ωSiIdA(i)
❚õ ➤ã t❛ ❝ã
SnNdA(n)
SiIdA(i
✭✷✮✳
❚õ ✭✶✮ ✈➭ ✭✷ s✉② r❛
SnNdA(n) = SiIdA(i).
❉♦ ➤ã
P(SnNdA(n)) = lim
i→∞ P(A(i)).
❚õ ❣✐➯ t❤✐Õt s✉② r❛
{P(A(n))}
❧➭ ❞➲② t➝♥❣❀ ➳♣ ❞ô♥ ➤Þ♥❤ ❧ý ✷✳✽ t❛ ➤➢î
lim
ni→∞ P(A(n)) = lim
i→∞ P(A(i)) = P([
nNd
A(n)).
✭✐✐✮ ❈❤ø♥❣ ♠✐ t➢➡♥❣ tù✳
❇æ ➤Ò s❛✉ ➤➞② ❧➭ ❞➵♥❣
d
❝❤Ø ❝ñ ❜æ ➤Ò ❇♦r❡❧✲❈❛♥t❡❧❧✐