Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
lượt xem 5
download
Mời các em học sinh cùng tham khảo Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối B (Đáp án chính thức) của Bộ GD&ĐT sau đây, nhằm giúp các em đang chuẩn bị bước vào các kỳ thi tuyển sinh đại học có thêm kinh nghiệm để làm bài thi đạt kết quả tốt nhất. Tham khảo kèm đề thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối B (Đề thi chính thức) của Bộ GD&ĐT.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối B (Đáp án chính thức) - Bộ GD&ĐT
- Bé gi¸o dôc vµ ®µo t¹o §¸p ¸n - Thang ®iÓm ..................... ®Ò thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2004 ........................................... §Ò chÝnh thøc M«n: To¸n, Khèi B (§¸p ¸n - thang ®iÓm cã 4 trang) C©u ý Néi dung §iÓm I 2,0 1 Kh¶o s¸t hµm sè (1,0 ®iÓm) 1 y = x 3 − 2x 2 + 3x (1). 3 a) TËp x¸c ®Þnh: R . b) Sù biÕn thiªn: y' = x2 − 4x + 3; y' = 0 ⇔ x = 1, x = 3 . 0,25 4 2 yC§ = y(1) = , yCT = y(3) = 0; y" = 2x − 4, y'' = 0 ⇔ x = 2, y ( 2 ) = . §å thÞ 0,25 3 3 hµm sè låi trªn kho¶ng (− ∞; 2), lâm trªn kho¶ng ( 2; + ∞ ) vµ cã ®iÓm uèn lµ ⎛ 2⎞ U ⎜ 2; ⎟ . ⎝ 3⎠ B¶ng biÕn thiªn: x −∞ 1 3 +∞ y' + 0 − 0 + 4 0,25 y +∞ 3 −∞ 0 c) §å thÞ: Giao ®iÓm cña ®å thÞ víi c¸c trôc Ox, Oy lµ c¸c ®iÓm ( 0;0 ) , ( 3;0 ) . 0,25 1
- 2 ViÕt ph−¬ng tr×nh tiÕp tuyÕn cña (C) t¹i ®iÓm uèn, ...(1,0 ®iÓm) ⎛ 2⎞ T¹i ®iÓm uèn U ⎜ 2; ⎟ , tiÕp tuyÕn cña (C) cã hÖ sè gãc y' (2) = −1 . 0,25 ⎝ 3⎠ TiÕp tuyÕn ∆ t¹i ®iÓm uèn cña ®å thÞ (C) cã ph−¬ng tr×nh: 2 8 y = −1.(x − 2) + ⇔ y = − x + . 0,25 3 3 HÖ sè gãc tiÕp tuyÕn cña ®å thÞ (C) t¹i ®iÓm cã hoµnh ®é x b»ng: 0,25 y'(x) = x2 − 4 x + 3 = ( x − 2) 2 − 1 ≥ − 1 ⇒ y' (x) ≥ y' (2), ∀ x. DÊu " =" x¶y ra khi vµ chØ khi x = 2 ( lµ hoµnh ®é ®iÓm uèn). 0,25 Do ®ã tiÕp tuyÕn cña ®å thÞ (C) t¹i ®iÓm uèn cã hÖ sè gãc nhá nhÊt. II 2,0 1 Gi¶i ph−¬ng tr×nh (1,0 ®iÓm) 5sinx − 2 = 3 tg2x ( 1 − sinx ) (1) . π §iÒu kiÖn: cosx ≠ 0 ⇔ x ≠ + kπ, k ∈ Z (*). 0,25 2 3sin 2 x 2 Khi ®ã (1) ⇔ 5sin x − 2 = 2 (1 − sin x) ⇔ 2 sin x + 3 sin x − 2 = 0 . 0,25 1 − sin x 1 ⇔ sin x = hoÆc sin x = −2 (v« nghiÖm). 2 0,25 1 π 5π sin x = ⇔ x = + k 2 π hoÆc x = + k 2 π , k ∈ Z ( tho¶ m·n (*)). 2 6 6 0,25 2 T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cña hµm sè (1,0 ®iÓm) ln 2 x y= x ln x(2 − ln x) ⇒ y' = ⋅ 0,25 x2 ⎡ln x = 0 ⎡ x = 1∈ [1; e3 ] y'= 0 ⇔ ⎢ ⇔⎢ 0.25 ⎣ln x = 2 2 3 ⎣⎢ x = e ∈ [1; e ]. 4 9 Khi ®ã: y(1) = 0, y(e 2 ) = 2 , y(e3 ) = 3 ⋅ e e 0,25 4 So s¸nh 3 gi¸ trÞ trªn, ta cã: max y = 2 khi x = e2 , min3 y = 0 khi x = 1 . 3 [1; e ] e [1; e ] 0,25 III 3,0 1 T×m ®iÓm C (1,0 ®iÓm) x −1 y −1 Ph−¬ng tr×nh ®−êng th¼ng AB: = ⇔ 4x + 3y – 7 = 0. 0,25 3 −4 Gi¶ sö C( x; y) . Theo gi¶ thiÕt ta cã: x − 2 y − 1 = 0 (1). 4x + 3y − 7 ⎡ 4x + 3y − 37 = 0 (2a) d(C, (AB)) = 6 ⇔ =6⇔⎢ 42 + 32 ⎣ 4x + 3y + 23 = 0 (2b). 0,25 Gi¶i hÖ (1), (2a) ta ®−îc: C1( 7 ; 3). 0,25 ⎛ 43 27 ⎞ Gi¶i hÖ (1), (2b) ta ®−îc: C2 ⎜ − ; − ⎟ . 0,25 ⎝ 11 11 ⎠ 2 TÝnh gãc vµ thÓ tÝch (1,0 ®iÓm) 2
- Gäi giao ®iÓm cña AC vµ BD lµ O th× SO ⊥ (ABCD) , suy ra n = ϕ. SAO Gäi trung ®iÓm cña AB lµ M th× OM ⊥ AB vµ SM ⊥ AB ⇒ Gãc gi÷a hai mÆt ph¼ng (SAB) vµ n. (ABCD) lµ SMO 0,25 a a 2 a 2 Tam gi¸c OAB vu«ng c©n t¹i O, nªn OM = , OA = ⇒ SO = tgϕ . 2 2 2 n = SO = 2 tgϕ . Do ®ã: tgSMO OM 0,25 1 1 a 2 2 3 VS.ABCD = SABCD .SO = a 2 tgϕ = a tgϕ. 0,50 3 3 2 6 3 ViÕt ph−¬ng tr×nh ®−êng th¼ng ∆ (1,0 ®iÓm) §−êng th¼ng d cã vect¬ chØ ph−¬ng v = (2; − 1; 4) . 0,25 B ∈ d ⇔ B(−3 + 2 t; 1 − t; − 1 + 4 t ) (víi mét sè thùc t nµo ®ã ). JJJG ⇒ AB = (1 + 2t;3 − t; − 5 + 4t ) . 0,25 AB ⊥ d ⇔ AB.v = 0 ⇔ 2(1 + 2t) − (3 − t) + 4(−5 + 4t) = 0 ⇔ t = 1. 0,25 JJJG x+4 y+2 z−4 ⇒ AB = (3; 2; −1) ⇒ Ph−¬ng tr×nh cña ∆ : = = . 0,25 3 2 −1 IV 2,0 1 TÝnh tÝch ph©n (1,0 ®iÓm) e 1 + 3 ln x ln x I= ∫ dx . 1 x dx §Æt: t = 1 + 3ln x ⇒ t 2 = 1 + 3ln x ⇒ 2tdt = 3 . x x =1⇒ t =1 , x = e ⇒ t = 2 . 0,25 2 2 2 t2 −1 2 2 Ta cã: I = ∫ 31 3 ( ) t dt = ∫ t 4 − t 2 dt . 91 0,25 2 2⎛1 1 ⎞ I = ⎜ t5 − t3 ⎟ . 9⎝5 3 ⎠1 0,25 116 I= . 135 0,25 3
- 2 X¸c ®Þnh sè ®Ò kiÓm tra lËp ®−îc ... (1,0 ®iÓm) Mçi ®Ò kiÓm tra ph¶i cã sè c©u dÔ lµ 2 hoÆc 3, nªn cã c¸c tr−êng hîp sau: • §Ò cã 2 c©u dÔ, 2 c©u trung b×nh, 1 c©u khã, th× sè c¸ch chän lµ: 2 2 C15 .C10 .C15 = 23625 . 0,25 • §Ò cã 2 c©u dÔ, 1 c©u trung b×nh, 2 c©u khã, th× sè c¸ch chän lµ: 2 C15 .C110 .C 52 = 10500 . 0,25 • §Ò cã 3 c©u dÔ, 1 c©u trung b×nh, 1 c©u khã, th× sè c¸ch chän lµ: 3 C15 .C110 .C15 = 22750 . 0,25 V× c¸c c¸ch chän trªn ®«i mét kh¸c nhau, nªn sè ®Ò kiÓm tra cã thÓ lËp ®−îc lµ: 23625 + 10500 + 22750 = 56875 . 0,25 V X¸c ®Þnh m ®Ó ph−¬ng tr×nh cã nghiÖm 1,0 §iÒu kiÖn: − 1 ≤ x ≤ 1. §Æt t = 1 + x 2 − 1 − x 2 . Ta cã: 1 + x 2 ≥ 1 − x 2 ⇒ t ≥ 0 , t = 0 khi x = 0. t2 = 2 − 2 1− x4 ≤ 2 ⇒ t ≤ 2 , t = 2 khi x = ± 1. ⇒ TËp gi¸ trÞ cña t lµ [0; 2 ] ( t liªn tôc trªn ®o¹n [ − 1; 1]). 0,25 −t 2 + t + 2 Ph−¬ng tr×nh ®· cho trë thµnh: m ( t + 2 ) = − t 2 + t + 2 ⇔ = m (*) t+2 −t 2 + t + 2 XÐt f(t) = víi 0 ≤ t ≤ 2 . Ta cã f(t) liªn tôc trªn ®o¹n [0; 2 ]. t+2 Ph−¬ng tr×nh ®· cho cã nghiÖm x ⇔ Ph−¬ng tr×nh (*) cã nghiÖm t ∈ [0; 2 ] ⇔ min f ( t ) ≤ m ≤ max f ( t ) . [ 0; 2 ] [ 0; 2 ] 0,25 2 − t − 4t Ta cã: f '(t) = ≤ 0, ∀t ∈ ⎡⎣0; 2 ⎤⎦ ⇒ f(t) nghÞch biÕn trªn [0; 2 ]. ( t + 2) 2 0,25 Suy ra: min f (t) = f ( 2) = 2 − 1 ; max f (t) = f (0) = 1 . [0; 2] [0; 2] VËy gi¸ trÞ cña m cÇn t×m lµ 2 −1 ≤ m ≤ 1 . 0,25 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi học kì 2 lớp 8 môn Toán năm 2017-2018 có đáp án - Phòng GD&ĐT Vĩnh Tường
5 p | 404 | 32
-
Đề thi học kì 1 môn Tiếng Anh lớp 6 năm 2017-2018 có đáp án - Phòng GD&ĐT Bù Đăng
3 p | 197 | 25
-
Đề thi học kì 2 lớp 9 môn Toán năm 2017-2018 có đáp án - Phòng GD&ĐT Thanh Oai
2 p | 404 | 19
-
Đề thi học kỳ 2 môn Ngữ Văn lớp 6 năm 2017-2018 có đáp án - Phòng GD&ĐT Vĩnh Yên
3 p | 656 | 17
-
Đề thi học kì 2 môn Hóa lớp 8 năm 2017-2018 có đáp án - Trường THCS Bình An
2 p | 242 | 15
-
Đề thi học kì 2 lớp 9 môn Toán năm 2017-2018 có đáp án - Phòng GD&ĐT Vĩnh Tường
3 p | 320 | 14
-
Đề thi học kì 1 môn Tiếng Anh lớp 7 năm 2017-2018 có đáp án - Phòng GD&ĐT Vĩnh Tường
5 p | 133 | 13
-
Đề thi học kì 2 môn Vật lý lớp 9 năm 2018 có đáp án
3 p | 131 | 8
-
Đề thi học kì 2 môn Công nghệ lớp 9 năm 2018 có đáp án - Trường THCS Bình An
2 p | 109 | 6
-
Đề thi học kì 2 môn Ngữ Văn lớp 7 năm 2017-2018 có đáp án - Trường THCS Lê Khắc Cẩn
4 p | 277 | 6
-
Đề thi học kì 1 môn Ngữ Văn lớp 7 năm 2017-2018 có đáp án - Phòng GD&ĐT Vĩnh Linh
3 p | 262 | 4
-
Đề thi học kì 1 môn Địa lý lớp 6 năm 2017 có đáp án - Đề số 4
1 p | 189 | 4
-
Đề thi học kì 2 môn Lịch Sử lớp 9 năm 2017-2018 có đáp án - Trường THCS Vĩnh Thịnh
6 p | 195 | 4
-
Đề thi học kỳ 2 lớp 6 môn Sinh năm 2018 có đáp án - Đề số 2
3 p | 157 | 4
-
Đề thi học kì 2 môn Lịch Sử lớp 8 năm 2017-2018 có đáp án - Trường THCS Bình An
5 p | 329 | 3
-
Đề thi học kì 2 lớp 7 môn Sinh năm 2017-2018 có đáp án - Trường THCS Khai Quang
2 p | 117 | 3
-
Đề thi học kì 2 lớp 9 môn Sinh năm 2017-2018 có đáp án - Trường THCS Bình An
4 p | 145 | 3
-
Đề thi học kì 2 môn Địa lý lớp 9 năm 2017-2018 có đáp án - Sở GD&ĐT Thanh Hóa
5 p | 181 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn