Đề cương ôn thi Toán 12
lượt xem 474
download
Giáo trình ôn tập môn toán tham khảo dành cho học sinh hệ Trung học phổ thông ôn thi tốt nghiệp và ôn thi đại học củng cố lại kiến thức.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề cương ôn thi Toán 12
- Ph n 1: C C TR TRONG IS : M t s d ng toán thư ng g p: ▼ D ng 1: ưa v d ng bình phương I. Phương pháp gi : ưa v d ng A2 ≥ 0, ho c A2+ c ≥ c (v I c là h ng s ) d u b ng x y ra khi A=0 II. M t s bài t p ví d : Ví d 1: Tìm giá tr l n nh t c a P = x 1 − x ( ) L i gi i: 2 1 1 1 ( ) P = x 1− x = −x + x = − x − + ≤ 2 4 4 1 1 ng th c x y ra khi x = và x = 2 4 1 1 Do ó giá tr l n nh t c a P là t khi x = 4 4 Ví d 2: 1 Tìm giá tr c a x bi u th c có giá tr l n nh t x − 2 2x + 5 2 L i gi i: Ta có: ( ) 2 x2 − 2 2x + 5 = x − 2 +3≥ 3 1 1 ⇒ ≤ x2 − 2 2x + 5 3 1 1 Do ó, khi x = 2 thì b êu th c có giá tr l n nh t là x − 2 2x + 5 2 3 V í d 3: V I x,y không âm; tìm giá tr nh nh t c a bi u th c: P = x − 2 xy + 3 y − 2 x + 2004,5 L i gi i: t x = a, y = b v I a, b ≥ 0 ta có: 1
- P = a 2 − 2 ab + 3b 2 − 2 a + 2004, 5 = a 2 − 2 ( b + 1) a + 3b 2 + 2004,5 = a 2 − 2 ( b + 1) a + ( b + 1) + 2b 2 − 2b + 2003,5 2 1 1 = ( a − b − 1) + 2 b 2 − b + + 2003, 5 − 2 4 2 2 1 = ( a − b − 1) + 2 b − + 2003 ≥ 2003 2 2 2 1 Vì ( a − b − 1) ≥ 0 và b − 2 ≥ 0 ∀ a , b 2 3 a = b +1 a= 2 P = 2003 ⇔ ⇔ 1 1 b= b= 2 2 3 1 9 1 V yP t giá tr nh nh t là 2003 khi x= và y= hay x = và y = 2 2 4 4 III. Bài t p t gi i: 1) Tìm giá tr l n nh t c a bi u th c: P = 2 − 5 x 2 − y 2 − 4 xy + 2 x 2) Tìm giá tr nh nh t c a f ( x, y ) = x 2 − 2 xy + 6 y 2 − 12 x + 45 1 3) Cho hai s x,y tho mãn ng th c: 8 x 2 + y 2 + =4 4 x2 Xác nh x,y tích xy t giá tr nh nh t 4) Cho a là s c nh, còn x, y là nh ng s bi n thiên. Hãy tìm giá tr nh nh t c a bi u th c: A = (x– 2y + 1)2 + (2x + ay +5)2 Hư ng d n gi I và áp s : 1)Max P = 3 khi (x,y) = (1, -2) 2) f ( x, y ) = ( x − y − 6 ) + 5 y 2 + 9 ≥ 9 2 3) Thêm 4 xy + 4 x 2 vào 2 v 1 1 K t qu : xy t GTNN là − khi x = ± y = ±1 2 2 9 4) A ≥ 0 khi a ≠ -4, A = khi a = -4 5 2
- ▼ D ng 2: s d ng mi n giá tr c a hàm s I. Phương pháp gi : Cho y = f(x) xác nh trên D y0 ∈ f ( D ) ⇔ phương trình y0 = f ( x ) có nghi m ⇔ a ≤ y0 ≤ b Khi ó min y = a, max y = b II. M t s bài t p ví d : Ví d 1: x Tìm Max và Min c a: y = x +1 2 L i gi i: T p xác nh D = R ⇒ y0 là m t giá tr c a hàm s x ⇔ phương trình y0 = có 1 nghi m x ∈ R x +1 2 ⇔ phương trình x 2 y0 + y0 = x có nghi m x ∈ R ⇔ phương trình x 2 y0 − x + y0 = 0 có nghi m x ∈ R ⇔ ∆≥0 ⇔ 1− 4 y2 ≥ 0 ⇔ y2 ≤ 4 1 1 ⇔ − ≤ y≤ 2 2 1 1 V y Min y = − , Max y = 2 2 Ví d 2: ax + b Xác inh các tham s a, b sao cho hàm s y = t giá tr l n nh t b ng x2 + 1 4, giá tr nh nh t b ng –1 L i gi i: T p xác nh D = R ax+b y0 là m t giá tr c a hàm s ⇔ phương trình y0 = có nghi m x ∈ R x2 + 1 ⇔ phương trình y0 x 2 − ax + y0 − b = 0 có nghi m x ∈ R (1) • N u y0 = 0 thì (1) ⇔ ax = -b có nghi m a=b=0 ⇔ a≠0 • N u y0 ≠ 0 thì (1) có nghi m ⇔ ∆ ≥ 0 ⇔ a 2 − 4( y0 − b) y0 ≥ 0 3
- ⇔ −4 y0 2 + 4by0 + a 2 ≥ 0 Theo y0 t giá tr l n nh t là 4, giá tr nh nh t là –1 nên phương trình −4 y0 + 4by0 + a ph I có nghi m là –1 và 4 (do -1.4 = -4 < 0) 2 2 −a 2 = −4 a = ±4 4 Theo nh lý Viet ta có : ⇔ b=3 b=3 V y v I a = 4, b = 3 ho c a = -4, b = 3 thì min y = -1, max y = 4 Ví d 3: 3 12 x( x − a ) 4 Tìm giá tr l n nh t c a hàm s : y = 2 x + 36 L i gi i: Hàm s ã cho xác nh khi x ( x − a ) ≥ 0 12 x( x − a ) t z= 2 (1) thì y = z , z ≥ 0 4 3 x + 36 12 x( x − a ) z0 là m t giá tr c a hàm s (1) ⇔ phương trình z0 = có nghi m x 2 + 36 hay phương trình (12 − z0 ) x 2 − 12ax − 36 z0 = 0 có nghi m (2) • z0 =12 : (2) ⇔ ax = -36 có nghi m khi a ≠ 0 • z0 ≠ 12 : (2) có nghi m ⇔ ∆ = 36a 2 + 36 z0 (12 − z0 ) ≥ 0 ⇔ a 2 + 12 z0 − z0 2 ≥ 0 ⇔ z0 2 − 12 z0 − a 2 ≤ 0 ⇔ 6 − a 2 + 36 ≤ z0 ≤ 6 + a 2 + 36 Vì z0 ≥ 0 nên 0 ≤ z0 ≤ 6 + a 2 + 36 V y max z = 6 + a 2 + 36 ; max y = 4 (6 + a 2 + 36)3 III. Bài t p t gi i: x2 − 2x + 2 1) Tìm giá tr l n nh t, nh nh t c a bi u th c: y = x2 + 2x + 2 3 x + 3 + 4 1− x +1 2) Tìm giá tr l n nh t, nh nh t c a bi u th c: y = 4 x + 3 + 3 1− x +1 1 3) Tìm giá tr nh nh t c a hàm s : f ( x) = x + x 2 + ,x>0 x Hư ng d n gi I và áp s : 4
- 1) Max y = 3 + 2 2 , Min y = 3 − 2 2 2) k: −3 ≤ x ≤ 1 2t 1− t2 ϕ t x + 3 = 2. ; 1 + x = 2. v I t = tg ∈ [0;1] 1+ t 2 1+ t 2 2 7t + 12t + 9 2 Ta có y = − 2 −5t + 16 + 7 9 7 Max y y = khi x = -3; min y = khi x = 1 7 9 0 < x ≤ y0 (1) 1 y0 = x + x 2 + ⇔ 3)Tìm nghi m c a h x x>0 2 y0 x 2 − y0 2 x + 1 = 0 (2) i u ki n (2) có nghi m là y0 ≥ 2 Áp d ng Vi-et ta ch ng minh ư c x1 < x2 < y0 V y min f(x) = 2 v I x >0 ▼ Dang 3: S d ng m t s b t ng th c quen thu c ► B t ng th c Cauchy I. Ki n th c c n n m: • Cho hai s a, b ≥ 0, ta coù: a+b ≥ ab 2 D u “ =” x y ra khi ⇔ a = b • Cho n s a1, a2, … , an ≥ 0, ta có: a1 + a 2 + ... + a n n ≥ a1 a 2 ...a n n D u “=” x y ra ⇔ a1 = a2 = … = an II. M t s bài t p ví d : ◦ Bi n pháp 1: Áp d ng b t ng th c tr c ti p. Ví d 1: 1 1 1 Cho x > 0 ; y > 0 tho mãn i u ki n + = . Tìm giá tr nh nh t c a bi u x y 2 th c A = x+ y L i gi i: 5
- 1 1 Vì x > 0 ; y > 0 nên >0; >0; x > 0; y > 0 , theo b t Cauchy có: x y 1 1 11 1 . ≤ + x y 2 x y 1 1 => ≤ => xy ≥ 4 xy 4 V n d ng b t Cauchy v i hai s dương x và y ta ư c A = x + y ≥ 2 x . y ≥ 2 4 = 4 ( D u “=” x y ra ⇔ x = y = 4) V y min A = 4 ( khi và ch khi x = y = 4). Nh n xét: không ph i lúc nào ta cũng có th dùng tr c ti p b t Cauchy i v i các s trong bài. Dư i ây ta s nghiên c u m t s bi n pháp bi n i m t bi u th c có th v n d ng b t Cauchy r i tìm c c tr c a nó. Bi n pháp 1 : tìm c c tr c a m t bi u th c ta tìm c c tr c a bình phương bi u th c ó. Ví d 2: Tìm giá tr l n nh t c a bi u th c : A = 3 x − 5 + 7 − 3 x. L i gi i: 5 7 KX : ≤ x ≤ . 3 3 A = (3x – 5) + (7- 3x) + 2 (3 x − 5).(7 − 3 x) 2 A2 ≤ 2 + ( 3x – 5 + 7 – 3x) = 4 ( d u “=” x y ra ⇔ 3x – 5 = 7 – 3x ⇔ x = 2). V y max A2 = 4 => max A = 2 ( khi và ch khi x = 2). Nh n xét: Bi u th c A ư c cho dư i d ng t ng c a hai căn th c. Hai bi u th c l y căn có t ng không i (b ng 2). Vì v y, n u ta bình phương bi u th c A thì s xu t hi n h ng t là hai l n tích c a căn th c. n ây có th v n d ng b t ng th c Cauchy. ◦ Bi n pháp 2: Nhân và chia bi u th c v i cùng m t s khác 0. Ví d 3: x−9 Tìm giá tr l n nh t c a bi u th c A = 5x L i gi i: KX : x ≥ 9 6
- x−9 1 x−9 .3 + 3 x − 9 + 9 x −9 ≤ = 3 2 3 3 1 A= = = 5x 5x 5x 10 x 30 x−9 (d u “ =” x y ra khi và ch khi = 3 ⇔ x = 18 ). 3 1 V y max A = ( khi và ch khi x = 18). 30 x−9 Nh n xét: Trong cách gi i trên, x – 9 ư c bi u di n thành .3 và khi vân 3 x −9 x−9 1 d ng b t Cauchy, tích .3 ư c làm tr i tr thành t ng + 3 = x có 3 3 3 d ng kx có th rút g n cho x m u, k t qu là m t h ng s . Con s 3 tìm ư c b ng cách l y căn b c hai c a 9, s 9có trong bài. Bi n pháp 3: Bi n i bi u th c ã cho thành t ng c a các bi u th c sao cho tích c a chúng là m t h ng s . 1. Tách m t h ng t thành t ng c a nhi u h ng t b ng nhau. Ví d 4 : 3 x 4 + 16 Cho x > 0, tìm giá tr nh nh t c a bi u th c : A = . x3 L i gi i: 16 16 16 A = 3x + 3 = x + x + x + 3 ≥ 4.4 x.x.x. 3 x x x 16 A ≥ 4.2 = 8 ( d u “ =” x y ra khi và ch khi x = ⇔ x=2 x3 V y min A = 8 ( khi và ch khi x = 2). 16 Nh n xét: Hai s dương 3x và có tích không ph i là m t h ng s .Mu n kh 3x ư c x3 thì ph i có x3 = x.x.x do ó ta ph i bi u di n 3x = x + x + x r i dùng b t Cauchy v i 4 s dương. 2. Tách m t h ng t ch a bi n thành t ng c a m t h ng s v i m t h ng t ch a bi n sao cho h ng t này là ngh ch o c a h ng t khác có trong bi u th c ã cho ( có th sai khác m t h ng s ). Ví d 5: 9x 2 Cho 0 < x < 2, tìm giá tr nh nh t c a bi u th c A = + . 2− x x 7
- L i gi i: 9x 2−x A= + +1 2− x x 9x 2 − x A ≥ 2. . +1 = 2 9 +1 = 7 2− x x 9x 2− x 1 ( d u “=” x y ra ⇔ = ⇔ x = ). 2−x x 2 1 V y min A = 7 ( khi và ch khi x =). 2 ◦ Bi n pháp 4: Thêm m t h ng t vào bi u th c ã cho. Ví d 6: Cho ba s dương x, y, z tho mãn i u ki n x + y + z = 2. Tìm giá tr nh nh t c a bi u th c : x2 y2 z2 P= + + . y+z z+x x+ y L i gi i: x2 y+ z Áp d ng b t Cauchy i v i hai s dương và ta ư c: y+z 4 x2 y+z x2 y + z x + ≥ 2. . = 2. = x y+z 4 y+z 4 2 Tương t : y2 z+x + ≥y z+x 4 z2 x+ y + ≥z x+ y 4 x2 y2 z2 x + y + z V y y+ z z+ x x+ y+ + + ≥ x+ y+z 2 x+ y+z 2 P ≥ (x + y + z ) − = 1 (d u “=” x y ra ⇔ x = y = z = ). 2 3 III. Bài t p t gi i: 1) Cho x + y = 15, tìm gía tr nh nh t, giá tr l n nh t c a bi u th c: B = x−4 + y −3 2) Cho x, y, z ≥ 0 tho mãn i u ki n x + y + z = a. Tìm giá tr l n nh t c a bi u th c A = xy + yz + xz. Tìm giá tr nh nh t c a bi u th c B = x2 + y2 + z2. 8
- 3) Cho x, y, z là các s dương tho mãn i u ki n x + y + z ≥ 12. Tìm giá tr x y z nh nh t c a bi u th c P = + + . y z x 4) Cho a, b, c là các s dương tho mãn i u ki n a + b + c = 1. Tìm giá tr (1 + a)(1 + b)(1 + c) nh nh t c a bi u th c A = . (1 − a)(1 − b)(1 − c) 5) Cho x, y tho mãn i u ki n x + y = 1 và x > 0. Tìm giá tr l n nh t c a bi u th c B = x2y3. xy yz zx 6) Tìm giá tr nh nh t c a A = + + v i x, y, z là các s dương và: z x y a) x + y + z = 1 b) x 2 + y 2 + z 2 = 1 1 1 1 7) Tìm giá tr l n nh t c a A = 3 + 3 + 3 v i a, b, c là a + b + 1 b + c + 1 c + a3 + 1 3 3 các s dương và abc = 1. 8)Tìm giá tr nh nh t, giá tr l n nh t c a A = x + y + z + xy + yz + zx bi t r ng x 2 + y 2 + z 2 = 3 . 9) Tìm giá tr nh nh t c a A = 3x + 3 y v i x + y = 4. 10) Tìm giá tr nh nh t c a A = x 4 − 4 x + 1 Hư ng d n gi i và áp s : 1. KX : x ≥ 4, y ≥ 3 B ≥ 8 ⇒ min B = 8 ( khi và ch khi x = 4, y = 11 ho c x = 12, y = 3). max B2 = 16 nên max B = 4 ( khi và ch khi x = 8, y = 7). 2 .a. xy + yz + xz ≤ x2 + y2 + z2 (áp d ng b t Cauchy cho 2 s , r i c ng l i theo v ). Suy ra: 3(xy + yz + xz) ≤ ( x + y + z )2 Hay 3A ≤ a2 b. B = x2 + y2 + z2 = ( x + y + z )2 – 2( x + y + z ) B = a2 – 2A B min ⇔ A max. 3. x 2 y 2 z 2 2x y 2 y z 2z x P2 = + + + + + . y z x z x y Áp d ng b t Cauchy cho 4 s dương: x2 x y x y x 2 .x 2 . y.z + + + z ≥ 44 = 4 x. y z z yz Còn l i: tương t C ng v v i v l i, ta ư c P2 ≥ 4(x + y + z) – (x + y + z) = 3(x + y + z) 9
- P2 ≥ 3.12 = 36 Min P = 6.( khi và ch khi x = y = z = 4). 4. a + b + c = 1 ⇒ 1 – a = b + c > 0. Tương t 1 – b > 0, 1 – c > 0. Có: 1 + a = 1 + (1 – b – c) = (1 – b) + (1 – c) ≥ 2 (1 − b )(1 − c ) Suy ra (1 + a)(1 + b)(1 + c) ≥ 8 (1 − a ) (1 − b ) (1 − c ) 2 2 2 A≥8 V y min A = 8. 5. N u y ≤ 0 thì B ≤ 0. N u y > 0 thì x x y y y x2 y3 108 1 = x + y = + + + + ≥ 55 ⇒ x2 y3 ≤ 2 2 3 3 3 108 3125 108 hay B ≤ 3125 108 Suy ra max B = . 3125 6. Theo b t ng th c Cô-si xy yz xy yz yz zx zx xy + ≥ 2. . = 2y tương t + ≥ 2z ; + ≥ 2x z x z x x y y z 1 Suy ra 2A ≥ 2(x+y+z) = 2 ; min A = 1 v i x = y = z = 3 x2 y 2 y2 z 2 z 2 x2 b) Ta có A = 2 + 2 + 2 + 2 2 z x y Hãy ch ng t A2 ≥ 3 . 3 Min A = 3 v ix=y=z= . 3 7. D ch ng minh a 3 + b3 ≥ ab ( a + b ) v i a > 0, b > 0. Do ó: a 3 + b3 + 1 ≥ ab ( a + b ) + abc = ab(a + b + c). 1 1 1 a+b+c A≤ + + = =1 ab(a + b + c) bc(a + b + c) ca (a + b + c) abc(a + b + c) max A = 1 ⇔ a = b = c = 1 8. ◦ Tìm giá tr l n nh t: ng th c ( x + y + z ) ≤ 3 ( x 2 + y 2 + z 2 ) ,ta ư c ( x + y + z ) ≤ 9 nên 2 2 Áp d ng b t 10
- x+ y+z ≤3 (1) Ta có b t ng th c xy + yz + zx ≤ x + y + z mà x + y + z 2 ≤ 3 nên 2 2 2 2 2 xy + yz + zx ≤ 3 (2) T (1) và (2) suy ra A ≤ 6 . Ta có max A = 6 ⇔ x = y = z = 1 . ◦ Tìm giá tr nh nh t : t x + y + z = m thì m 2 = x 2 + y 2 + z 2 + 2 ( xy + yz + zx ) = 3 + 2 ( xy + yz + zx ) m2 − 3 m2 − 3 Do ó xy + yz + xz = . Ta có A = m + nên 2 2 2 A = m 2 + 2m − 3 = ( m + 1) − 4 ≥ −4. 2 ⇒ A ≥ −2. x + y + z = 1 min A = −2 ⇔ 2 , ch ng h n x = -1, y = -1, z = 1. x + y + z = 3 2 2 9. A = 3x + 3 y ≥ 2 3x 3 y = 2 3x + y = 2 34 10. Ta có x ≤ x (x y ra d u b ng khi và ch khi x ≥ 0 ) nên −4 x ≥ −4 x . Do ó A ≥ x4 − 4 x + 1 . Áp d ng b t ng th c côsi v i b n s không âm x 4 + 1 + 1 + 1 ≥ 4 4 x 4 = 4 x ⇒ x 4 − 4 x + 1 ≥ −2. min A = −2 ⇔ x 4 = 1 và x ≥ 0 ⇔ x = 1 . ► B t ng th c Bunhiacopski: I. Ki n th c c n n m: • Cho a, b, c, d tuỳ ý, ta có (a2 + b2)(c2 + d2) ≥ (ac + bd)2 D u b ng x y ra khi: ad = bc. • Cho a1, … , an và b1, … , bn tuỳ ý, ta có: (a12 + … + an2)(b12 + … + bn2) ≥ ( a1b1 + … + anbn)2 a1 a D u b ng x y ra khi: = ... = n b1 bn II. M t s bài t p ví d : Ví d 1: Tìm giá tr l n nh t c a : P = 3 x − 1 + 4 5 − x L i gi i: KX : 1 ≤ x ≤ 5 Áp d ng b t Bunhiacopski có: 11
- P2 ≤ ( 32 + 42)(x – 1 + 5 – x) = 100 x −1 5− x 61 Suy ra max P = 10 khi = ⇔ x= . 3 4 25 Ví d 2: 5a 4b 3c Cho a, b, c > 0. Tìm min P = + + . b+c c+a a+b L i gi i: P= 5a 4b 3c 5 4 3 +5+ +4+ + 3 − (5 + 4 + 3) = (a + b + c ) + + − (5 + 4 + 3) b+c a+c a+b b+c a+c a+b = 1 [(a + b ) + (b + c ) + (c + a )]. 5 + 4 + 3 − (5 + 4 + 3) 2 b+c a +c a +b ≥ 1 2 ( ) 5 + 4 + 3 − (5 + 4 + 3) ( theo b t Bunhiacopski). 2 Vaäy min P = 1 2 ( ) 5 + 4 + 3 − (5 + 4 + 3) khi và ch khi 2 b+c a+c a+b 5 = 4 = 3 . T ng quát: Cho a, b, c > 0. Ch ng minh r ng: a b+c x2 + b a+c y2 + c a+b 1 ( z 2 ≥ ( xy + yz + xz ) − x 2 + y 2 + z 2 . 2 ) (c ng vào v trái (x2 + y2 +z2) r i tr i (x2 + y2 +z2), sau ó áp d ng b t Bunhicopski). Ví d 3: a + 3c c + 3b 4b Cho a, b, c > 0. Tìm min P = + + a+b b+c c+a L i gi i: a + 3c c + 3a 4b P= + 2 + + 2 + + 6 − 10 a+b b+c c+a 3a + 2b + 3c 2b + 3c + 3a 4b + 6c + 6a P= + + − 10 a+b b+c c+a 1 1 2 P = (3a + 2b + 3c ) + + − 10 a+b b+c c+a 1 P = [(a + b ) + (b + c ) + 2(a + c )]. + 1 + 2 ( − 10 ≥ 1 + 1 + 2 . 2 ) 2 − 10 = 6 a+b b+c c+a V y min P = 6 khi và ch khi (a + b)2 = (b + c)2 = (c + a)2 hay a = b = c. Cơ s : 12
- Ch n α , β , γ sao cho: a + 3c + α (a + b) = c + 3a + β (b + c) = 4b + γ (c + a ) = m(3a + 2b + 3c) . T ó suy ra α = β = 2, γ = 6, m = 2 . III. Bài t p t gi i: 1. Cho a, b, c > 0. Tìm giá tr nh nh t c a: 3b + 9c 8a + 4b a + 5b a) P= + + . a+b b+c c+a b + 3c 4a + 2b a + 5b b) Q= + + . a+b b+c c+a a + 3c 4b 8c c) R= + − . a + 2b + c a + b + 2c a + b + 3c 2. Tìm giá tr nh nh t, giá tr l n nh t c a A = x 2 + y 2 bi t r ng x 2 ( x 2 + 2 y 2 − 3) + ( y 2 − 2 ) = 1. 2 3. Tìm giá tr nh nh t c a : a2 b2 c2 A= + + v i a, b, c là các s dương và a + b + c =6. b+c c+a a+b 2 1 4. Tìm giá tr nh nh t c a A = + v i 0 < x < 2. 2− x x 5. Cho a, b, c > 0 và abc = 1 1 1 1 Tìm giá tr nh nh t c a A = 3 + 3 + 3 a (b + c ) b ( a + c ) c ( a + b) Hư ng d n gi và áp s : 1. Câu a và câu b làm tương t ví d 3 Câu c không th làm như ví d 3 ư c, ta làm như sau: t a + 2b + c = x a + b + 2c = y a + b + 3c = z t ó suy ra c = z – y; b = x + y – 2y; a = 5y – x – 3z. 2 y − x 4 x + 4 z − 8 y 8z − 8 y 2 y 4x 4z 8y khi ó R = + + = −1+ + −8−8+ . x y z x y y z R i áp d ng b t ta tìm ư c min R. 2. T gi thi t suy ra (x + y 2 ) − 4 ( x 2 + y 2 ) + 3 = − x 2 ≤ 0. 2 2 Do ó A2 − 4 A + 3 ≤ 0 ⇔ ( A − 1)( A − 3) ≤ 0 ⇔ 1 ≤ A ≤ 3. min A = 1 ⇔ x = 0, y = ±1. max A = 3 ⇔ x = 0, y = ± 3. 3. 13
- Áp d ng b t ng th c Bunhiacópki cho 3 c p s Ta có a 2 b 2 c 2 ( ) ( ) ( ) a+b 2 2 2 + + b+c + a+c + b + c a + c a + b 2 a b c ≥ b+c + a+c + a+b b+c a+c a+b a2 b2 c2 2 ( a + b + c ) ≥ ( a + b + c ) 2 ⇒ + + b+c a+c a+b a2 b2 c2 a+b+c ⇒ + + ≥ . b+c a+c a+b 2 Suy ra min A = 3. 4. Áp d ng b t ng th c Bunhiacopski ( a 2 + b2 )( m2 + n2 ) ≥ ( am + bn )2 Ta có: 2 1 2 2 1 2 ( ) +( ) x ≥ 2 2 2 2 A = + 2− x (2 − x) + x 2 − x x 2− x x ( ) 2 ⇒ 2A ≥ 2 +1 = 3 + 2 2. 2 1 min 2 A = 3 + 2 2 ⇔ 2 − x = x ⇔ 2 1 = 2 ⇔ 2x2 = x2 − 4x + 4 2− x x (2 − x) x 2 ⇔ x 2 + 4 x + 4 = 8 ⇔ ( x + 2 ) = 8 ⇔ x = 2 2 − 2 (chú ý x > 0). 2 3 V y min A = + 2 2 ⇔ x = 2 2 − 2. 2 5. 1 1 1 t a= ,b = ,c = x y z x, y , z > 0 thì xyz = 1 x2 y2 z2 Khi ó A = + + y+z z+x x+ y Áp d ng b t ng th c Bunhiacopski, bi n i tương ương ta ư c: (x + y + z) 2 x+ y+z A≥ = ( y + z ) + ( z + x) + ( x + y) 2 M t khác theo BDT côsi ta có: x + y + z ≥ 3 3 xyz = 3 V y 14
- x y z y+ z = z+ x = x+ y 3 min A = ⇔ x = y = z 2 xyz = 1 ⇔ x = y = z = 1 ⇔ a = b = c. ► B t ng th c Bernoulli I. Ki n th c c n n m α x ≥ 1 − α + αx (1) (α ≥ 1, x > 0) D u “ =” x y ra khi x =1 II. M t s bài t p ví d : Ví d 1: Cho x, y > 0 sao cho x + y = 1. Tim giá tr nh nh t : a. P = x2 + y2 b. Q = x5 + y5 L i gi i: a. Áp d ng b t Bernoulli ta có: (2x)2 ≥ 1 – 2 + 2(2x) (2y)2 ≥ 1 – 2 + 2(2y) C ng v theo v : 4P ≥ -2 + 4(x + y) = 2 1 P≥ . 2 1 1 V y min P = khi và ch khi x = y = . 2 2 b. Áp d ng b t Bernoulli ta có: (2x)5 ≥ 1 – 5 + 5(2x) (2y)5 ≥ 1 – 5 + 5(2y) C ng v theo v ta có: 32Q ≥ -8 + 10(x + y) = 2 1 Q≥ 16 1 1 V y min Q = . Khi và ch x = y = . 16 2 T ng quát: S = xm + ym , m ≥ 1 v i x + y = 1. 15
- *. Theo (1), v i m i α ≥ β > 0 , ta có: α α α x β ≥ 1− + x (1’) β β 1 t t = x ⇔ tβ = x β (1’) ⇔ α α β tα ≥ 1− + t (2) β β D u “=” x y ra khi t = 1. Ví d 2: 10 10 Cho x, y > 0, sao cho x3 + y3 = 1. Tìm min P = x 3 + y 3 . L i gi i: Theo (2), ta có: ( 2x) ( ) 10 10 10 3 3 3 3 ≥ 1− + 2x 9 9 ( ) ( ) 10 10 10 3 3 3 2y 3 ≥ 1− + 2y 9 9 ( ) 10 2 10 ⇒ 3 2 3 P ≥ − + .2 ( x 3 + y 3 ) = 2 9 9 1 V yP≥ 9 2 1 1 Hay min P = 9 khi và ch khi x = y = 3 2 2 t *. T (2) thay t b i , ta ư c: t0 α α α α −β β t α ≥ 1 − β t 0 + .t 0 .t (3) β D u “=” x y ra khi t = t0 v i t0 là i m t giá tr nh nh t. Bài toán: Cho a.x β + b. y β = 1.(α ≥ β ; a, b, c, d > 0 ) Tìm min P = c.x α + d . y α 16
- α cx = X t α dy =Y Bài toán tr thành : Cho m.x β + n. y β = p (m,n > 0) Tìm min A = x α + y α L i gi i: Theo b t (3), ta có: α α α α x α ≥ 1 − x 0 + x 0 − β . x β β β α α α α y α ≥ 1 − y 0 + y 0 − β . y β β β α α α α C ng l i : A ≥ 1 − (x0 + y 0 ) + (x0 − β .x β + y 0 − β . y β ). α α β β Ch n (x0 , y0) tho mãn: m.x β + n. y β = p x0 − β α y α −β = 0 . m n α α α xα −β Khi ó: A ≥ 1 − (x 0 + y 0 ) + . 0 . p. α β β m α α α xα −β V y min A = 1 − β ( ) α x 0 + y 0 + . 0 . p khi và ch khi x = x0, y = y0. β m ▼ D ng 4: Áp d ng b t ng th c trong tam giác và phuơng pháp t a , vectơ. I. Phương pháp gi i: V i 3 i m A, B, C, b t kì trong m t ph ng ta có: AB + BC ≥ AC ( ng th c khi B n m gi a A và C). • V i hai véc tơ b t kì a và b ta có: a±b ≤ a + b . ng th c khi a và b cùng hư ng (1) • N u a = ( a1 , a2 ) và b = ( b1 + b2 ) (1) ⇔ ( a1 ± b1 ) + ( a2 ± b2 ) 2 2 ≤ a12 + a2 2 + b12 + b2 2 17
- a1 = k .b1 ng th c x y ra khi (k ∈ R) a2 = k .b2 D ng toán tìm giá tr l n nh t c a hàm s : a, b ≠ 0 y= f 2 ( x ) + a2 + g 2 ( x ) + b2 v i f ( x) ± g ( x) = k (k ∈ R) S d ng b t ng th c tam giác: gi s f ( x) − g ( x) = k . Trong m t ph ng Oxy xét i m: M ( f ( x ) , a ) ⇒ OM = f 2 ( x ) + a 2 và N ( g ( x), − b ) ⇒ ON = g ( x) 2 + b 2 . f ( x) − g ( x) + ( a + b ) 2 = k 2 + ( a + b ) . 2 2 Ta có: MN = Vì OM + ON ≥ MN ⇔ y ≥ k 2 + ( a + b ) 2 . ng th c x y ra khi M, N, O th ng hàng ⇔ a . f ( x) + b .g ( x) = 0 . V y Min y = k 2 + ( a + b ) 2 . II. M t s bài t p ví d : Ví d 1: Tìm giá tr nh nh t c a bi u th c A = a 2 + a + 1 + a 2 − a + 1, ⊥ ∀a ∈ R. L i gi i: D th y bi u th c không thay i khi thay a b i −a , do ó ch c n gi i v i a ≥ 0 . • Khi a = 0 : A = 2 . A AB AM = MB = 2 = 1 π • Khi a > 0 : Xét ∆ABC có: CM = a M 3 π AMC = 3 B C Theo nh lí hàm côsi: π AC 2 = 1 + a 2 − 2.1.a.cos = a 2 + 1 − a. 3 ⇒ AC = a − a + 1. 2 Tương t BC = a 2 + a + 1 , AB = 2. Khi ó: AC + BC ≥ AB ⇒ a 2 + a + 1 + a 2 − a + 1 ≥ 2 ⇔ A ≥ 2. ng th c x y x y ra khi a = 0 . V y MinA = 2 khi a = 0. Ví d 2: Tìm giá tr nh nh t c a: y = x 2 − 2 px + 2 p 2 + x 2 − 2qx + 2q 2 . L i gi i: 18
- Ta có: y = ( x − p)2 + p 2 ( x − q) 2 + q 2 . Xét i m M ( x − p, p ); N ( x − q, q ). Ta có: MN = ( p − q ) 2 + ( p + q ) 2 . Vì OM + ON ≥ MN ⇔ y ≥ ( p − q )2 + ( p + q )2 . ⇒ Min y = ( p − q ) 2 + ( p + q ) 2 . p q +q p Khi M , N , O th ng hàng ⇔ q ( x − p ) + q ( x − q ) = 0 ⇔ x = . p+q Ví d 3: Tìm giá tr nh nh t c a: y = cos 2 x − 2.cos x + 5 + cos 2 x + 4.cos x + 8. L i gi i: Trong m t ph ng Oxy , xét i m M (2;1 − cos x); N (4, 3) Ta có: MN = (2, 2 + cos x) như v y y = OM + MN . Do 0 ≤ 1 − cos x ≤ 2 nên M ∈ [ AB ] v i A(2, 0) và B (2, 2) . Ta có: OM + MN ≥ ON = 42 + 32 = 5. ng th c x y ra khi O, M , N th ng hàng ⇔ 6 − 4.(1 − cos x) = 0 1 2π ⇔ cos x = − ⇔ x=± + 2 kπ . 2 3 2π V y Min y = 5 khi x = ± + 2 kπ . 3 Ví d 4: a 2 + c 2 = 1 (1) Cho 3 s th c a, b, c tho mãn h sau b + 2b(a + c) = 6 ( 2 ) 2 Tìm giá tr nh nh t c a M = b(c − a ). L i gi i: T gi thi t ta có: 2a 2 + 2c 2 + b 2 + 2ab + 2bc = 8 b b ⇔ ( a + ) 2 + ( + c) 2 = 4 2 2 Do (1) ⇔ ( 2c ) + (−2a ) 2 = 4 2 b b Xét x(a + ; + c); y (2c; −2a ) 2 2 19
- Ta có: x = 2 , y = 2 , x. y = b.(c − a). Mà x. y ≤ x . y cùng hư ng: a+ b b +c b.(a + c) = −2 2= 2 ⇔ ⇔ b.(a + c) = −2.(a 2 + c 2 ) ⇒ a 2 + c 2 = 1 2c − 2c b 2 = 10 (do (1) và (2) ) b = 10 a + c = − 2 10 2 2 a + c = 1 3 1 3 1 ⇔ ⇒ (a, b, c) = (− , 10, );( , − 10, − ) b = − 10 10 10 10 10 a + c = 2 10 2 2 a + c = 1 ⇒ Max M = b(c − a ) = 4 khi (a, b, c) như trên. III. Bài t p t gi i: 1)Tìm giá tr l n nh t và giá tr nh nh t c a hàm s y = 1 + sin 4 x + cos 4 x + 2 cos 2 x + 2 2)Tìm giá tr nh nh t c a hàm s : y = x 2 − x + 1 + x 2 − 3x + 1 3)Tìm giá tr l n nh t và giá tr nh nh t c a hàm s : x4 y 4 x2 y2 y = 4 + 4 − 2 2 + 2 −1 y x y x 4)Tìm giá tr nh nh t c a hàm s : f ( x ) = 2 x2 − 2 x + 1 + 2 x2 + ( ) 3 + 1 x + 1 + 2 x2 − ( ) 3 −1 x +1 y Hư ng d n gi và áp s : 2 N 1. y = 1 + (1 − cos 2 x ) + 1 + (1 + cos 2 x ) 2 2 Ta có: 1 B M A O 1 2 x 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐỀ CƯƠNG ÔN TẬP TOÁN 12 HỌC KÌ 1 NĂM 2010 - 2011
7 p | 1347 | 444
-
Đề cương ôn tập Toán 12 năm học 2013 - 2014
49 p | 186 | 52
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Xuân Đỉnh
26 p | 82 | 5
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Hai Bà Trưng
14 p | 42 | 3
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Đoàn Kết
30 p | 43 | 3
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trung tâm Giáo dục thường xuyên Ninh Thuận
16 p | 39 | 3
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Lương Ngọc Quyến
37 p | 24 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Nguyễn Bỉnh Khiêm
22 p | 19 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Chu Văn An
19 p | 25 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Hà Huy Tập
18 p | 31 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Bùi Thị Xuân
26 p | 43 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Trần Đại Nghĩa
6 p | 35 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Chu Văn An
23 p | 24 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2017-2018 - Trường THPT Hai Bà Trưng
15 p | 35 | 2
-
Đề cương ôn tập học kì 2 môn Toán 12 năm 2018-2019 - Trường THPT Yên Hòa
48 p | 40 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Yên Hòa
17 p | 35 | 2
-
Đề cương ôn tập học kì 1 môn Toán 12 năm 2019-2020 - Trường THPT Phan Bội Châu
18 p | 29 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn