intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ ĐẠI HỌC LẦN I MÔN TOÁN NĂM 2011 TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:2

244
lượt xem
58
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học lần i môn toán năm 2011 trường thpt chuyên phan bội châu', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC LẦN I MÔN TOÁN NĂM 2011 TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN ĐỀ THI THỬ ĐẠI HỌC LẦN I – NĂM 2011 MÔN TOÁN; KHỐI A, B TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU Thời gian làm bài : 180 phút; không kể thời gian giao đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số y  x 3  3x 2  mx  2 (Cm) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (Cm) khi m = 0 2. Tìm m để hàm số (Cm) có cực đại và cực tiểu, đồng thời các điểm cực trị của đồ thi hàm số cách đều đường thẳng d: x – y – 1 = 0 Câu II (2,0 điểm)     1. Giải phương trình: sin  3x    sin 2x.sin  x   4 4   2. Giải phương trình: 4x 2  8x  2x  3  1 (x   ) e ln x. 1  ln x Câu III (1,0 điểm) Tính tích phân I   dx x 1  ln x 1 Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và tam giác SCD vuông cân tại S. Gọi I, J lần lượt là trung điểm của AB, CD. Tính thể tích khối chóp S.AICJ. Câu V (1,0 điểm) Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: 1  a 2 1  b2 1  c2 M   1  b2 1  c2 1  a 2 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hia phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm là H(-1;4), tâm đường tròn ngoại tiếp là I(3;0) và trung điểm của cạnh BC là M(0;3). Viết phương trình đường thẳng AB, biết B có hoành độ dương. 2. Trong không gian Oxyz, cho hai điểm A(1; 2; 2) và B(5; 4; 4) và mặt phẳng (P): 2x + y – z + 6 = 0. Tìm điểm M nằm trên (P) sao cho MA2 + MB2 nhỏ nhất. Câu VII.a (1,0 điểm) Tìm môđun của số phức x biết 4z  1  3i  z  25  21i B. Theo chương trình nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho ba điểm A(1;1), B(3;2) và C(7;10). Viết phương trình đường thẳng d đi qua A sao cho tổng khoảng cách từ B đến đường thẳng d và C đến đường thẳng d là lớn nhất. 2. Trong không gian t ọa độ Oxyz, cho mặt phẳng (P): 2x + y – z + 6 = 0 và đường thẳng d: x  2 y 1 z 1 . Viết phương trình hình chiếu vuông góc của d lên mặt phẳng (P).   5 4 2  y 2  4xy  4x  2y  1   x, y    Câu VII.b (1 điểm) Giải hệ phương trình  log 2 x.log 2 1  y   1  ----------Hết---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không được giải thích gì thêm. Họ và tên thí sinh:.........................................; Số báo danh:...................... http://toancapba.com hoc toan va on thi dai hoc mien phi !
  2. www.VNMATH.com Đáp số: 1. a. Tự giải b. m = 0   k (k  ) 2. a. x =  4 3  17 5  21 b. x  hoặc x = 4 4  3. 1  4 a3 3 4. 24 7 ; (x, y, z) = (0, 0, 1) và các hoán vị 5. Max  2 6. a. 1. 3x + 7y – 49 = 0 a. 2. (-1; 1;5) 7. a. 29 http://toancapba.com hoc toan va on thi dai hoc mien phi !
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2