Đề thi thử đại học môn toán năm 2011 - đề 1
lượt xem 15
download
Tài liệu tham khảo và tuyển tập chuyên đề ôn thi và đề thi thử đại học môn toán năm 2011 giúp các bạn ôn thi môn toán tốt và đạt kết quả cao trong kỳ thi tốt nghiệp trung học phổ thông và...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học môn toán năm 2011 - đề 1
- SỞ GIÁO DỤC – ĐÀO TẠO HẢI PHÒNG ĐỀ THI THỬ ĐẠI HỌC LẦN 2 – THÁNG 12/2010 TRƯỜNG THPT CHUYÊN TRẦN PHÚ Môn thi: TOÁN HỌC – Khối A, B Thời gian: 180 phút ĐỀ CHÍNH THỨC Câu I: x+2 ( C) . Cho hàm số y = x−2 1. Khảo sát và vẽ ( C ) . 2. Viết phương trình tiếp tuyến của ( C ) , biết tiếp tuyến đi qua điểm A ( −6;5 ) . Câu II: π 1. Giải phương trình: cos x + cos3x = 1 + 2 sin 2x + ÷. 4 x 3 + y3 = 1 2. Giải hệ phương trình: 2 x y + 2xy + y = 2 2 3 Câu III: π dx 4 ∫ cos x ( 1 + e ) Tính I = −3x 2 π − 4 Câu IV: Hình chóp tứ giác đều SABCD có khoảng cách từ A đến mặt phẳng ( SBC ) bằng 2. Với giá trị nào của góc α giữa mặt bên và mặt đáy của chóp thì thể tích của chóp nhỏ nhất? Câu V: Cho a , b,c > 0 : abc = 1. Chứng minh rằng: 1 1 1 + + ≤1 a + b +1 b + c +1 c + a +1 Câu VI: 1. Trong mặt phẳng Oxy cho các điểm A ( 1;0 ) , B ( −2;4 ) ,C ( −1; 4 ) , D ( 3;5 ) và đường thẳng d : 3x − y − 5 = 0 . Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2. Viết phương trình đường vuông góc chung của hai đường thẳng sau: x = −1 + 2t x y −1 z + 2 d1 : = = d 2 : y = 1 + t ; −1 2 1 z = 3 Câu VII: 20 C0 21 C1 22 C2 23 C 3 22010 C 2010 A= − + − + ... + Tính: 2010 2010 2010 2010 2010 1.2 2.3 3.4 4.5 2011.2012
- ĐÁP ÁN ĐỀ THI THỬ ĐH LẦN 2 Câu I: 1. a) TXĐ: ¡ \ { 2} b) Sự biến thiên của hàm số: -) Giới hạn, tiệm cận: +) x →2 y = −∞, x →2 y = +∞ ⇒ x = 2 là tiệm cận đứng. lim lim − + +) lim y = lim y = 1 ⇒ y = 1 là tiệm cận ngang. x →−∞ x →+∞ -) Bảng biến thiên : 4 y' = − < 0 ∀x ≠ 2 ( x − 2) 2 c) Đồ thị : -) Đồ thị cắt Ox tại ( −2;0 ) , cắt Oy tại ( 0; −1) , nhận I ( 2;1) là tâm đối xứng. 2. Phương trình đường thẳng đi qua A ( −6;5 ) là ( d ) : y = k ( x + 6 ) + 5 . (d) tiếp xúc (C) khi và chỉ khi hệ sau có nghiệm : x+2 4 x+2 − x − 2 2 ×( x + 6 ) + 5 = x − 2 k ( x + 6) + 5 = ( ) x−2 ⇔ 4 4 k = − k = − ( x − 2) 2 ( x − 2) 2 Suy ra có −4 ( x + 6 ) + 5 ( x − 2 ) = ( x + 2 ) ( x − 2 ) 2 4x − 24x = 0 2 x = 0;k = −1 ⇔ ⇔ ⇔ 4 4 x = 6;k = − 1 k=− k=− ( x − 2) ( x − 2) 2 2 4 x7 2 tiếp tuyến là : ( d1 ) : y = − x − 1; ( d 2 ) : y = − + 42 Câu II:
- π 1. cos x + cos3x = 1 + 2 sin 2x + ÷ 4 ⇔ 2cos x cos 2x = 1 + sin 2x + cos2x ⇔ 2cos 2 x + 2sin x cos x − 2cos x cos 2x = 0 ⇔ cos x ( cos x + sinx − cos2x ) = 0 ⇔ cos x ( cos x + sinx ) ( 1 + sinx − cosx ) = 0 π x = + kπ 2 cos x = 0 π ⇔ cos x + sinx = 0 ⇔ x = − + kπ 4 1 + sinx − cosx = 0 π 1 sin x − 4 ÷ = − 2 π x = + kπ π 2 x = 2 + kπ x = − π + kπ π 4 ⇔ ⇔ x = − + kπ x − π = − π + k2π 4 x = k2π 4 4 π 5π x − = + k2π 44 1 1 3 3 13 2 ( x − y ) + − ÷ = − ÷ 2x + y = x y x x y ⇔ 2. 2y + 1 = 3 2x + 1 = 3 xy yx 4( x − y) x = y 2 ( x − y ) = − xy = −2 xy ⇔ ⇔ 13 2x + 1 = 3 2x + = yx yx x = y 2x + 1 = 3 x = y = 1 x = y = −1 xx ⇔ ⇔ 2 x = 2, y = − 2 y=− x x = − 2, y = 2 2x − x = 3 2x Câu III:
- d ( x2 ) 1 11 1 1 dt xdx I=∫ 4 =∫ 2 0 ( x2 ) 2 + x2 +1 2 ∫ t2 + t +1 = 0 x + x +1 2 0 3 1 1 dt 1 du 2 ∫ =∫ = 2 2 1 2 3 2 2 0 1 2 3 t + ÷ + 2 u + ÷ ÷ 2 2 2 π π 3 3 dy Đặ t u = tan y, y ∈ − ; ÷ ⇒ du = × 2 cos 2 y 2 2 2 π π 1 3 u = ⇒ y = ;u = ⇒ y = 2 6 2 3 3 π π dy π 1 13 3 2 ⇒I= ∫ ∫ dy = 6 3 = 2 π cos 2 y ×3 × 1 + tan 2 y ( ) 3 π6 4 6 Câu IV: Gọi M, N là trung điểm BC, AD, gọi H là hình chiếu vuông góc từ N xuống SM. Ta có: SMN = α,d ( A; ( SBC ) ) = d ( N; ( SBC ) ) = NH = 2 · S NH 2 4 ⇒ MN = = ⇒ SABCD = MN 2 = sin α sin α sin 2 α tan α 1 SI = MI.tan α = = sin α cosα 1 4 1 4 H ⇒ VSABCD = × 2 × = 3 sin α cosα 3.sin α.cosα 2 sin 2 α + sin 2 α + 2cos 2α 2 C D sin α.sin α.2cos α ≤ = 2 2 2 3 3 N 1 M I ⇒ sin 2 α.cosα ≤ 3 A B VSABCD min ⇔ sin α.cosα max 2 1 ⇔ sin 2 α = 2cos 2α ⇔ cosα = 3 Câu V: Ta có:
- )( ) ( ( ) a+b= a+3b a 2 − 3 ab + 3 b 2 ≥ 3 ab a+3b 3 3 3 ab ( ) ( ) ( ) Tương tự ⇒ a + b +1 ≥ a + 3 b + 1 = 3 ab a + 3 b + 3 abc = 3 ab a+3b+3c 3 3 3 3 1 1 c 3 ⇒ ≤ = ( ) a + b + 1 3 ab a+ b+3c a+ b+ c 3 3 3 3 3 suy ra OK! Câu VI: 1. Giả sử M ( x; y ) ∈ d ⇔ 3x − y − 5 = 0. AB = 5,CD = 17 uuu r uuur AB ( −3;4 ) ⇒ n AB ( 4;3) ⇒ PT AB : 4x + 3y − 4 = 0 uuu r uuur CD ( 4;1) ⇒ n CD ( 1; −4 ) ⇒ PT CD : x − 4y + 17 = 0 SMAB = SMCD ⇔ AB.d ( M;AB ) = CD.d ( M;CD ) 4x + 3y − 4 x − 4y + 17 ⇔ 5× = 17 × ⇔ 4x + 3y − 4 = x − 4y + 17 5 17 3x − y − 5 = 0 ⇒ 4x + 3y − 4 = x − 4y + 17 3x − y − 5 = 0 3x + 7y − 21 = 0 7 ⇔ ⇒ M1 ;2 ÷, M 2 ( −9; −32 ) 3x − y − 5 = 0 3 5x − y + 13 = 0 2. Gọi M ∈ d1 ⇒ M ( 2t;1 − t; −2 + t ) , N ∈ d 2 ⇒ N ( −1 + 2t ';1 + t ';3 ) uuuu r ⇒ MN ( −2t + 2t '− 1; t + t '; − t + 5 ) uuuu ur ru 2 ( −2t + 2t '− 1) − ( t + t ' ) + ( − t + 5 ) = 0 MN.u1 = 0 ⇔ uuuu ur ru 2 ( −2t + 2t '− 1) + ( t + t ' ) = 0 MN.u1 = 0 −6t + 3t '+ 3 = 0 ⇔ ⇔ t = t' =1 −3t + 5t '− 2 = 0 uuuu r ⇒ M ( 2;0; −1) , N ( 1;2;3 ) , MN ( −1;2;4 ) x − 2 y z +1 ⇒ PT MN : == −1 2 4 Câu VII: 20 C0 21 C1 22 C2 23 C 3 2 2010 C 2010 A= − + − + ... + 2010 2010 2010 2010 2010 1 2 3 4 2011
- Ta có: ( −2 ) 2010! = ( −2 ) 2010! k k 2k C k ( −1) k = 2010 ( k + 1) k!( 2010 − k ) !( k + 1) ( k + 1) !( 2010 − k ) ! ( −2 ) 2011! k 1 1 ×( −2 ) C k +1 k +1 = × =− 2011 ( k + 1) !( 2011 − k − 1) ! 2011 4022 1 × ( −2 ) C1 + ( −2 ) C 2 + ... + ( −2 ) C 2011 1 2 2011 ⇒A=− 4022 2011 2011 2011 1 1 × ( −2 + 1) − ( −2 ) C0 = 2011 0 =− 4022 2011 2011
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học môn Sinh lần 1 năm 2011 khối B
7 p | 731 | 334
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Sinh lần 2
4 p | 539 | 231
-
Đề thi thử Đại học môn Sinh năm 2010 khối B - Trường THPT Anh Sơn 2 (Mã đề 153)
5 p | 456 | 213
-
Đề thi thử Đại học môn Văn khối D năm 2011
4 p | 885 | 212
-
Đề thi thử Đại học môn Toán 2014 số 1
7 p | 278 | 103
-
Đề thi thử Đại học môn tiếng Anh - Đề số 10
6 p | 384 | 91
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 1-4)
4 p | 223 | 35
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 2
7 p | 229 | 25
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 5-8)
4 p | 138 | 17
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 1
11 p | 142 | 15
-
Đề thi thử Đại học môn Lý năm 2013 - Trường THPT chuyên Lương Văn Chánh (Mã đề 132)
7 p | 177 | 12
-
Đề thi thử Đại học môn Lý năm 2011 - Trường THPT Nông Cống I
20 p | 114 | 9
-
Đề thi thử đại học môn Lý khối A - Mã đề 132
6 p | 54 | 9
-
Đề thi thử Đại học môn Toán năm 2011 - Trường THPT Tây Thụy Anh
8 p | 79 | 8
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011
6 p | 105 | 7
-
Đề thi thử Đại học môn Toán năm 2011 khối A
6 p | 104 | 7
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án
7 p | 102 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn