Đề thi thử Đại học năm 2014 môn Toán - Đề số 10
Chia sẻ: Duyrin10@gmail.com Duyrin10@gmail.com | Ngày: | Loại File: DOC | Số trang:5
lượt xem 3
download
Để học sinh xem xét đánh giá khả năng tiếp thu bài và nhận biết năng lực của bản thân về môn Toán, mời các bạn tham khảo Đề thi thử Đại học năm 2014 môn Toán - Đề số 10 có kèm theo hướng dẫn giải.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học năm 2014 môn Toán - Đề số 10
- ĐỀ THI THỬ ĐẠI HỌC NĂM 2014. Môn thi: TOÁN Thời gian làm bài: 180 phút ĐỀ SỐ 10BB A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): Câu I (2 điểm): Cho hàm số y = x 3 − 3mx 2 + 3(m 2 − 1) x − m3 + m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm): π 1. Giải phương trình : 2cos3x.cosx+ 3(1 + s in2x)=2 3cos 2 (2 x + ) 4 2. Giải phương trình : log 1 (5 − 2 x) + log 2 (5 − 2 x).log 2 x +1 (5 − 2 x) = log 2 (2 x − 5) + log 2 (2 x + 1).log 2 (5 − 2 x) 2 2 2 ππ tan( x − ) 6 Câu III (1 điểm): Tính tích phân : I = 4 dx 0 cos2x Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SD và mặt phẳng (AMN). Chứng minh SD vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P = 3( x 2 + y 2 + z 2 ) − 2 xyz . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;5 ) và đường thẳng ∆ : 3x − 4 y + 4 = 0 . Tìm trên ∆ hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x + 6 y − 4 z − 2 = 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v(1;6; 2) , vuông góc với mặt phẳng (α ) : x + 4 y + z − 11 = 0 và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P = (1 + 2 x + 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): x2 y 2 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : + = 1 và hai điểm A(3;2) , B(3;2) . 9 4 Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x + 6 y − 4 z − 2 = 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v(1;6; 2) , vuông góc với mặt phẳng (α ) : x + 4 y + z − 11 = 0 và tiếp xúc với (S). Câu VIIb (1 điểm): 2 22 2n n 121 Tìm số nguyên dương n sao cho thoả mãn Cn0 + Cn1 + Cn2 + ... + Cn = 2 3 n +1 n +1
- ----------Hết ---------- Họ và tên thí sinh: ………………………………………………; Số báo danh: …BB01064…….. ĐÁP ÁN VÀ THANG ĐIỂM Câu NỘI DUNG Điêm 2. Ta có y = 3 x − 6mx + 3(m − 1) , 2 2 Để hàm số có cực trị thì PT y , = 0 có 2 nghiệm phân biệt 05 � x 2 − 2mx + m 2 − 1 = 0 có 2 nhiệm phân I biệt � ∆ = 1 > 0, ∀m Cực đại của đồ thị hàm số là A(m1;22m) và cực tiểu của đồ thị 025 hàm số là B(m+1;22m) m = −3 + 2 2 Theo giả thiết ta có OA = 2OB � m + 6m + 1 = 0 � 2 025 m = −3 − 2 2 Vậy có 2 giá trị của m là m = −3 − 2 2 và m = −3 + 2 2 . 1. � π � PT � cos4x+cos2x+ 3(1 + sin 2 x) = 3 � 1 + cos(4x+ ) � 05 � 2 � � cos4x+ 3 sin 4 x + cos2x+ 3 sin 2 x = 0 π π � sin(4 x + ) + sin(2 x + ) = 0 6 6 π π x=− +k π 18 3 � 2sin(3 x + ).cosx=0 � 05 6 π x= + kπ 2 II π π π Vậy PT có hai nghiệm x = + kπ và x = − + k . 2 18 3 −1 5
- Kết hợp với ĐK trên PT đã cho có 3 nghiệm x=1/4 , x=1/2 và x=2. 025 π π π III tan( x − ) 4 dx = − tan x + 1 dx 6 6 2 025 I=� � 0 cos2x 0 (t anx+1) 2 1 Đặt t = t anx � dt= 2 dx = (tan 2 x + 1)dx cos x x = 0�t = 0 05 π 1 x = �t = 6 3 1 1 3 Suy ra I = − dt 1 3 1− 3 . 025 = = 0 (t + 1) 2 t + 10 2 IV 05 AM ⊥ BC , ( BC ⊥ SA, BC ⊥ AB ) Ta có � AM ⊥ SC (1) AM ⊥ SB, ( SA = AB ) Tương tự ta có AN ⊥ SC (2) Từ (1) và (2) suy ra AI ⊥ SC Vẽ IH song song với BC cắt SB tại H. Khi đó IH vuông góc với (AMB) 1 Suy ra VABMI = S ABM .IH 3 a2 Ta có S ABM = 05 4 IH SI SI .SC SA2 a2 1 1 1 = = = = = � IH = BC = a BC SC SC 2 SA + AC 2 2 a + 2a 2 2 3 3 3 2 3 1a a a Vậy VABMI = = 3 4 3 36
- V Ta c ó: P = 3� �( x + y + z ) 2 − 2( xy + yz + zx) � �− 2 xyz 025 = 3 [ 9 − 2( xy + yz + zx) ] − 2 xyz = 27 − 6 x( y + z ) − 2 yz ( x + 3) ( y + z)2 27 − 6 x(3 − x) − ( x + 3) 2 025 1 = (− x 3 + 15 x 2 − 27 x + 27) 2 Xét hàm số f ( x) = − x 3 + 15 x 2 − 27 x + 27 , với 0
- 1. Ta có PT đường thẳng AB:2x+3y=0 x2 y 2 VIIb Gọi C(x;y) với x>0,y>0.Khi đó ta có + = 1 và diện tích tam giác 05 9 4 ABC là 1 85 85 x y S ABC = AB.d (C AB ) = 2x + 3y = 3 + 2 2 13 13 3 4 85 �x 2 y 2 � 170 3 2 � + �= 3 13 �9 4 � 13 x2 y2 05 + =1 2 �9 4 �x = 3 3 2 Dấu bằng xảy ra khi � � 2 . Vậy C ( ; 2) . �x = y �y = 2 2 3 2 Xét khai triển (1 + x) = Cn0 + Cn1 x + Cn2 x 2 + ... + Cnn x n n Lấy tích phân 2 vế cân từ 0 đến 2 , ta được: 05 3n +1 − 1 2 2 1 23 3 2 n+1 n = 2Cn + Cn + Cn + ... + 0 Cn n +1 2 3 n +1 2 22 2n n 3n +1 − 1 121 3n +1 − 1 Cn0 + Cn1 + Cn2 + ... + Cn = � = 2 3 n +1 2(n + 1) n + 1 2(n + 1) � 3n +1 = 243 � n = 4 05 Vậy n=4.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học năm 2013 môn Hóa khối A, B - Trường THPT Trần Nhân Tông (Mã đề 325)
6 p | 285 | 104
-
Đề thi thử Đại học năm 2013 môn Toán khối A - Trường THPT chuyên Quốc học
1 p | 203 | 47
-
Đáp án và đề thi thử Đại học năm 2013 khối C môn Lịch sử - Đề số 12
6 p | 187 | 19
-
Đề thi thử Đại học năm 2013 môn Địa lý (có đáp án)
7 p | 152 | 15
-
Đề thi thử Đại học năm 2013 môn tiếng Anh khối D - Mã đề 234
8 p | 155 | 11
-
Đề thi thử Đại học năm 2014 môn Toán - GV Nguyễn Ngọc Hân
2 p | 123 | 10
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 6) - Sở GD & ĐT TP Hồ Chí Minh
8 p | 124 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 143 | 9
-
Đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 134 | 9
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 8) - Sở GD & ĐT TP Hồ Chí Minh
9 p | 111 | 5
-
Đề thi thử Đại học năm 2014 môn Toán - Sở Giáo dục và Đào tạo Bắc Ninh
5 p | 74 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 27
1 p | 56 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 28
1 p | 78 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 29
1 p | 81 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 30
1 p | 76 | 3
-
Đề thi thử Đại học năm học 2013-2014 môn Toán - Trường THPT số 1 Sơn Tịnh
7 p | 63 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 5
4 p | 53 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 9
6 p | 77 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn