Đề thi thử Đại học năm 2014 môn Toán - Đề số 4
Chia sẻ: Duyrin10@gmail.com Duyrin10@gmail.com | Ngày: | Loại File: DOCX | Số trang:6
lượt xem 2
download
Kỳ thi tuyển sinh Đại học, Cao đẳng sắp tới, nhằm giúp học sinh có thêm tài liệu tham khảo, chuẩn bị thật tốt kỳ thi quan trọng, chúng tôi xin giới thiệu Đề thi thử Đại học năm 2014 môn Toán - Đề số 4.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học năm 2014 môn Toán - Đề số 4
- ĐỀ THI THỬ ĐẠI HỌC NĂM 2014. Môn thi: TOÁN Thời gian làm bài: 180 phút ĐỀ SỐ 4BB A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số có đồ thị (Cm). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng Câu II (2 điểm) a) Giải phương trình: b) Giải phương trình : Câu III (1 điểm) Tính tích phân Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng (ABC) trùng với tâm O của tam giác ABC. Tính thể tích khối lăng trụ ABC.A’B’C’ biết khoảng cách giữa AA’ và BC là Câu V (1 điểm) Cho x,y,z thoả mãn là các số thực: .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức B. PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu VIa (2 điểm) a) Cho hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C. b) Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Câu VIIa(1 điểm) Giải phương trình:,C. Dành cho thí sinh thi theo chương trình nâng cao Câu VIb (2 điểm) a. Trong mp(Oxy) cho 4 điểm A(1;0),B(2;4),C(1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng sao cho hai tam giác MAB, MCD có diện tích bằng nhau b.Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2 Câu VIIb (1 điểm) Giải bất phương trình: Hết Họ và tên thí sinh: ………………………………………………; Số báo danh: …BB01064……..
- ĐÁP ÁN Câu I a) Đồ Học sinh tự làm 0,25 b) 0,5 y’ có 0,25 Hàm số đồng biến trên 0,25 Câu II a) Giải phương trình: 1 điểm PT 0,25 Nhận xét không là nghiệm của phương trình đã cho nên ta có: 0,25 ; 0,25 Xét khi 2m=5km, Xét khi =1+2m=7kk=2(m3k)+1 hay k=2l+1& m=7l+3, 0,25 Vậy phương trình có nghiệm: ();() trong đó b) Giải phương trình : 1 điểm PT 0,25 . Đặt Pt trở thành Ta có: Pt trở thành 0,25 Ta có: Từ đó ta có phương trình có nghiệm : Thay vào cách đăt giải ra ta được phương trình có các nghiệm: 0,5 Câu III Tính tích phân 1 điểm
- Ta c ó = 0,25 Đặt u=; Ta được: =3 0,25 0,25 =3 Vậy I 0,25 Câu IV Gọi M là trung điểm BC ta thấy: 0,5 Kẻ (do nhọn nên H thuộc trong đoạn AA’.) Do .Vậy HM là đọan vông góc chung của AA’và BC, do đó . Xét 2 tam giác đồng dạng AA’O và AMH, ta có: 0,5 suy ra Thể tích khối lăng trụ: Câu V 1.Cho a, b, c là các số thực dương thoả mãn .Chứng minh rằng: 1 điểm Đặt 0,5 *Trước hết ta chưng minh: :Thật vậy Do vai trò của a,b,c như nhau nên ta có thể giả thiết hay a = ==
- = do a *Bây giờ ta chỉ cần chứng minh: với a+2t=3 0,5 Ta có = = do 2t=b+c
- *O’ đỗi xứng với O qua (ABC) H là trung điểm của OO’ 0,5 CâuVIIa Giải phương trình:,C. 1 điểm PT 0,25 Đặt . Khi đó phương trình (8) trở thành: Đặt . Khi đó phương trình (8) trở thành 0,25 Vậy phương trình có các nghiệm: ; 0,5 Câu VIb 1 điểm a) Viết phương trình đường AB: và 0,25 Viết phương trình đường CD: và Điểm M thuộc có toạ độ dạng: Ta tính được: 0,25 Từ đó: 0,5 Có 2 điểm cần tìm là: b) 1 điểm Giả sử một mặt cầu S(I, R) tiếp xúc với hai đương thẳng d 1, d2 tại hai điểm A và B khi đó ta luôn có IA + IB ≥ AB và AB ≥ dấu bằng xảy ra khi I là trung điểm AB và AB là đoạn vuông góc chung của hai đường thẳng d1, d2 0, 25 Ta tìm A, B : 0,25 A d1, B d2 nên: A(3 + 4t; 1 t; 52t), B(2 + t’; 3 + 3t’; t’) (….)… A(1; 2; 3) và B(3; 0; 1)I(2; 1; 1) 0,25 Mặt cầu (S) có tâm I(2; 1; 1) và bán kính R= Nên có phương trình là: 0,25 CâuVIIb Giải bất phương trình 1 điểm Điều kiện: Bất phương trình 0.25 Nhận thấy x=3 không là nghiệm của bất phương trình.
- TH1 Nếu BPT Xét hàm số: đồng biến trên khoảng 0,25 nghịch biến trên khoảng *Với :Ta có Bpt có nghiệm * Với :Ta có Bpt vô nghiệm TH 2 :Nếu BPT 0,25 đồng biến trên khoảng nghịch biến trên khoảng *Với :Ta có Bpt vô nghiệm * Với :Ta có Bpt có nghiệm Vậy Bpt có nghiệm 0,25 Chú ý:Các cách giải khác cho kết quả đúng vẫn đươc điểm tối đa.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học năm 2013 môn Hóa khối A, B - Trường THPT Trần Nhân Tông (Mã đề 325)
6 p | 285 | 104
-
Đề thi thử Đại học năm 2013 môn Toán khối A - Trường THPT chuyên Quốc học
1 p | 201 | 47
-
Đáp án và đề thi thử Đại học năm 2013 khối C môn Lịch sử - Đề số 12
6 p | 187 | 19
-
Đề thi thử Đại học năm 2013 môn Địa lý (có đáp án)
7 p | 152 | 15
-
Đề thi thử Đại học năm 2013 môn tiếng Anh khối D - Mã đề 234
8 p | 155 | 11
-
Đề thi thử Đại học năm 2014 môn Toán - GV Nguyễn Ngọc Hân
2 p | 121 | 10
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 6) - Sở GD & ĐT TP Hồ Chí Minh
8 p | 124 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 143 | 9
-
Đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 134 | 9
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 8) - Sở GD & ĐT TP Hồ Chí Minh
9 p | 111 | 5
-
Đề thi thử Đại học năm 2014 môn Toán - Sở Giáo dục và Đào tạo Bắc Ninh
5 p | 73 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 27
1 p | 55 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 28
1 p | 78 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 29
1 p | 81 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 30
1 p | 76 | 3
-
Đề thi thử Đại học năm học 2013-2014 môn Toán - Trường THPT số 1 Sơn Tịnh
7 p | 62 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 5
4 p | 52 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 9
6 p | 75 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn