Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên
lượt xem 3
download
Để hệ thống lại kiến thức cũ, trang bị thêm kiến thức mới, rèn luyện kỹ năng giải đề nhanh và chính xác cũng như thêm tự tin hơn khi bước vào kì thi tuyển sinh sắp đến, mời các bạn học sinh cùng tham khảo Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên làm tài liệu để ôn tập. Chúc các bạn làm bài kiểm tra tốt!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên
- SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT ĐIỆN BIÊN NĂM HỌC 2019 - 2020 --------------- MÔN THI: TOÁN ĐỀ THI CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) ----------------------- ĐỀ BÀI Câu 1. (2,5 ñiểm) x +5 x −1 7 x − 3 Cho biểu thức: A = và B = + x −3 x +3 x −9 1. Tính A khi x = 25. 2. Rút gọn biểu thức B. A 3. Tìm giá trị nhỏ nhất của . B Câu 2. (2,5 ñiểm) 1. Giải phương trình: a) x 2 − 5 x + 4 = 0 b) x 4 + x 2 − 6 = 0 2 x − y = 7 2. Giải hệ phương trình: x − 2 y = −1 Câu 3. (1,0 ñiểm) Cho phương trình: x 2 + ax + b + 1 = 0 (a, b là các tham số). Tìm a, b ñể phương trình có 2 nghiệm x1, x2 thỏa x1 − x2 = 3 mãn: 3 x1 − x2 = 9 3 Câu 4. (3,0 ñiểm) Cho tứ giác ABCD nội tiếp (O; R) và có hai ñường chéo AC, BD vuông góc với nhau tại I (I khác O). Kẻ ñường kính CE. 1. Chứng minh tứ giác ABDE là hình thang cân. 2. Chứng minh: AB 2 + CD 2 + BC 2 + AD 2 = 2 2 R. 3. Từ A, B kẻ các ñường thẳng vuông góc với CD lần lượt cắt BD, AC tại F và K. Tứ giác ABKF là hình gì? Câu 5. (1,0 ñiểm) 1. Tìm nghiệm nguyên của phương trình: y 3 = x3 + x 2 + x + 1. 2. Cho các số nguyên a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng: A = (1 + a 2 )(1 + b 2 )(1 + c 2 ) là một số chính phương. ---------- HẾT ----------
- Câu 1. (2,5 ñiểm) x +5 x −1 7 x − 3 Cho biểu thức: A = và B = + x −3 x +3 x −9 1. Tính A khi x = 25. 2. Rút gọn biểu thức B. A 3. Tìm giá trị nhỏ nhất của . B Hướng dẫn: ðKXð: x ≥ 0, x ≠ 9 25 + 5 30 1. Với x = 25 (TMðK) => A = 25 − 3 = 5 − 3 =15 x −1 7 x − 3 ( x −1)( x − 3) 7 x − 3 B= + = + x +3 x −9 ( x + 3)( x − 3) x −9 2. Có: x − 4 x + 3+ 7 x −3 x +3 x x = = = x −9 x −9 x −3 A x+5 x x+5 = : = 3. Có: B x −3 x −3 x ðK: x > 0. A x+5 5 5 = = x+ ≥ 2. xi =2 5 B x x x => 5 x= ⇔ x = 5(TM ) Dấu "=" xảy ra x MinA = 2 5 ⇔ x = 5 Vậy Câu 2. (2,5 ñiểm) 1. Giải phương trình: x2 − 5x + 4 = 0 b) x + x − 6 = 0 4 2 a) 2 x − y = 7 2. Giải hệ phương trình: x − 2 y = − 1 Hướng dẫn: x = 1 ( x 2 − 2) = 0 ⇔ x = ± 2 1. a) x − 5 x + 4 = 0 ⇔ x = 4 b) x + x − 6 = 0 ⇔ ( x − 2)( x + 3) = 0 ⇔ 2 2 4 2 2 2 ( x + 3) = 0 (Vo ly )
- 2 x − y = 7 4 x − 2 y = 14 3x = 15 x = 5 2. x − 2 y = − 1 ⇔ ⇔ ⇔ x − 2 y = −1 x − 2 y = −1 y = 3 Câu 3. (1,0 ñiểm) Cho phương trình: x 2 + ax + b + 1 = 0 (a, b là các tham số). Tìm a, b ñể phương trình có 2 nghiệm x1, x2 thỏa x1 − x2 = 3 mãn: 3 x1 − x2 = 9 3 Hướng dẫn: Ta có: ∆ = a − 4(b + 1) = a − 4b − 4 2 2 ∆ ≥ 0 ⇔ a 2 − 4b − 4 ≥ 0 ðể phương trình có nghiệm thì: x1 − x2 = −a x .x = b + 1 Theo Vi-Et ta có: 1 2 x1 − x2 = 3 x1 − x2 = 3 3 ⇔ ⇔ ( x1 + x2 ) 2 − x1 x2 = 3 x − x2 = 9 3 ( x1 − x2 )( x1 + x1 x2 + x2 ) = 9 2 2 Mà: 1 ⇔ ( − a)2 − b − 1 = 3 ⇔ b = a 2 − 4 b = a2 − 4 ∆ = a 2 − 4b − 4 = a 2 − 4(a 2 − 4) − 4 = −3a 2 + 12 Thay vào biểu thức Delta ta có: ∆ ≥ 0 ⇔ −3a 2 − 12 ≥ 0 ⇔ − 2 ≤ a ≤ 2 ðK: − a + ∆ − a + −3a + 12 −a − ∆ − a − −3a + 12 2 2 x1 = = ; x2 = = 2 2 2 2 => −a + −3a 2 + 12 −a − −3a 2 + 12 x1 − x2 = 3 => x1 − x2 = − =3 2 2 a =1 Do: => − 3a 2 + 12 = 9 => (TM ) => b = −3 a = − 1 a = ±1 Vậy b = −3 thì pt có nghiệm thỏa mãn ñề bài. Câu 4. (3,0 ñiểm) Cho tứ giác ABCD nội tiếp (O; R) và có hai ñường chéo AC, BD vuông góc với nhau tại I (I khác O). Kẻ ñường kính CE. 1. Chứng minh tứ giác ABDE là hình thang cân.
- 2. Chứng minh: AB 2 + CD 2 + BC 2 + AD 2 = 2 2 R. 3. Từ A, B kẻ các ñường thẳng vuông góc với CD lần lượt cắt BD, AC tại F và K. Tứ giác ABKF là hình gì? Hướng dẫn: B C O E K I A D N M F = EBC 1. Có: EAC = EDC = 900 (Góc nt chắn nửa ñường tròn) ⇒ EA ⊥ AC ⇒ EA BD ( ⊥ AC ) ⇒ EADB là hình thang (1) BEC = BCE = 900 Mà: 0 (cmt) IDC = ICD = 90 = BDC = 1 Do: IDC ADC = BC (Góc nt chắn BC ) 2 => ICD = ACD = BCE => ⇒ EB = AD ⇒ EB = AD (2) Từ (1) và (2) => AEBD là hình thang cân. (ñpcm) 2. Có: AB 2 + CD 2 + BC 2 + AD 2 = ( ED 2 + CD 2 ) + ( BC 2 + EB 2 ) (Vì: AB = ED, AD = EB (cmt)) => AB 2 + CD 2 + BC 2 + AD 2 = (ED 2 + CD 2 ) + (BC 2 + EB 2 )
- = EC 2 + EC 2 = 2 EC 2 = 2.(2 R ) 2 = 2 2 R (ñpcm) 3. Giả sử : AF ⊥ CD = M ; BK ⊥ CD = N => MCA = IFA (Cùng phụ với CAM ) ⇒ ∆ AFB cân tại A. => AB = AF (3) = IAF ⇒ IAB (ðường cao trong tam giác cân) Mà: BK // AF (cùng ⊥ DC ) = IAF ⇒ IKB ( SLT ) ⇒ IKB = IAB (= IAF) ⇒ ∆ ABK cân tại B => BA = BK (4) Từ (3) và (4) => AB = BK = AF. => AF//=BK => ABKF là HBH Mặt khác: => ABKF là hình thoi. Câu 5. (1,0 ñiểm) 1. Tìm nghiệm nguyên của phương trình: y 3 = x3 + x 2 + x + 1. 2. Cho các số nguyên a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng: A = (1 + a 2 )(1 + b 2 )(1 + c 2 ) là một số chính phương. Hướng dẫn: x3 + x 2 + x + 1 = 0 ⇔ ( x + 1)( x 2 + 1) = 0 1. Với y = 0 => ( x + 1) = 0 ( Do : x + 1 > 0 ∀ x) x = -1. 2 Với y ≠ 0 => y.y2 = (x + 1)(x2 + 1) y = x +1 => y 2 = x 2 + 1 (Vì: x, y ∈ℤ ⇒ y < y , x + 1 < x + 1) 2 2 ( x + 1)2 = x 2 + 1 ⇔ x 2 + 2 x + 1 = x 2 + 1 ⇔ x = 0 => y = 1 Vậy pt có nghiệm là: (x;y) = (-1; 0) ; (0; 1) 2. Vì: ab+bc+ca = 1 => 1 + a2 = ab+bc+ca + a2 = (a+b)(a+c) (1) Tương tự: 1 + b2 = ab+bc+ca + b2 = (a+b)(b+c) (2) 1 + c2 = ab+bc+ca + c2 = (c+b)(a+c) (3)
- Từ (1), (2) và (3) => A = (a+b)2(b+c)2(c+a)2 => A là số CP (ñpcm)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án
66 p | 1866 | 112
-
Đề thi tuyển sinh vào lớp 10 năm 2017-2018 môn tiếng Anh - Sở GD&ĐT Kiên Giang
5 p | 692 | 76
-
Bộ đề thi tuyển sinh vào lớp 10 năm 2019-2020 có đáp án
146 p | 570 | 46
-
Đề thi tuyển sinh vào lớp 10 năm 2015-2016 môn tiếng Anh - Sở GD&ĐT Kiên Giang
6 p | 331 | 41
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Tiếng Anh có đáp án - Sở GD&ĐT Phú Thọ
8 p | 285 | 20
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2015-2016 - Sở GD&ĐT Bà rịa, Vũng Tàu
1 p | 287 | 14
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 - Sở GD&ĐT Hà Nội
1 p | 213 | 14
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án - Sở GD&ĐT Cao Bằng
3 p | 208 | 13
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2017-2018 có đáp án - Sở GD&ĐT TP Hồ Chí Minh
5 p | 157 | 11
-
Đề thi tuyển sinh vào lớp 10 năm 2016-2017 môn Toán - Sở GD&ĐT Kiên Giang
5 p | 96 | 10
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hải Phòng
11 p | 120 | 8
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hưng Yên (Đề chung)
5 p | 87 | 5
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án - Sở GD&ĐT Ninh Bình
4 p | 146 | 4
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hải Dương
6 p | 86 | 4
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hà Nội
5 p | 67 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hà Nam
5 p | 79 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Ngữ văn có đáp án - Sở GD&ĐT Nam Định
8 p | 153 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Quảng Ngãi
6 p | 60 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn