intTypePromotion=4

Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên

Chia sẻ: Lan Yuan | Ngày: | Loại File: PDF | Số trang:6

0
69
lượt xem
1
download

Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Để hệ thống lại kiến thức cũ, trang bị thêm kiến thức mới, rèn luyện kỹ năng giải đề nhanh và chính xác cũng như thêm tự tin hơn khi bước vào kì thi tuyển sinh sắp đến, mời các bạn học sinh cùng tham khảo Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên làm tài liệu để ôn tập. Chúc các bạn làm bài kiểm tra tốt!

Chủ đề:
Lưu

Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Điện Biên

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT ĐIỆN BIÊN NĂM HỌC 2019 - 2020 --------------- MÔN THI: TOÁN ĐỀ THI CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) ----------------------- ĐỀ BÀI Câu 1. (2,5 ñiểm) x +5 x −1 7 x − 3 Cho biểu thức: A = và B = + x −3 x +3 x −9 1. Tính A khi x = 25. 2. Rút gọn biểu thức B. A 3. Tìm giá trị nhỏ nhất của . B Câu 2. (2,5 ñiểm) 1. Giải phương trình: a) x 2 − 5 x + 4 = 0 b) x 4 + x 2 − 6 = 0 2 x − y = 7 2. Giải hệ phương trình:  x − 2 y = −1 Câu 3. (1,0 ñiểm) Cho phương trình: x 2 + ax + b + 1 = 0 (a, b là các tham số). Tìm a, b ñể phương trình có 2 nghiệm x1, x2 thỏa  x1 − x2 = 3 mãn:  3  x1 − x2 = 9 3 Câu 4. (3,0 ñiểm) Cho tứ giác ABCD nội tiếp (O; R) và có hai ñường chéo AC, BD vuông góc với nhau tại I (I khác O). Kẻ ñường kính CE. 1. Chứng minh tứ giác ABDE là hình thang cân. 2. Chứng minh: AB 2 + CD 2 + BC 2 + AD 2 = 2 2 R. 3. Từ A, B kẻ các ñường thẳng vuông góc với CD lần lượt cắt BD, AC tại F và K. Tứ giác ABKF là hình gì? Câu 5. (1,0 ñiểm) 1. Tìm nghiệm nguyên của phương trình: y 3 = x3 + x 2 + x + 1. 2. Cho các số nguyên a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng: A = (1 + a 2 )(1 + b 2 )(1 + c 2 ) là một số chính phương. ---------- HẾT ----------
  2. Câu 1. (2,5 ñiểm) x +5 x −1 7 x − 3 Cho biểu thức: A = và B = + x −3 x +3 x −9 1. Tính A khi x = 25. 2. Rút gọn biểu thức B. A 3. Tìm giá trị nhỏ nhất của . B Hướng dẫn: ðKXð: x ≥ 0, x ≠ 9 25 + 5 30 1. Với x = 25 (TMðK) => A = 25 − 3 = 5 − 3 =15 x −1 7 x − 3 ( x −1)( x − 3) 7 x − 3 B= + = + x +3 x −9 ( x + 3)( x − 3) x −9 2. Có: x − 4 x + 3+ 7 x −3 x +3 x x = = = x −9 x −9 x −3 A x+5 x x+5 = : = 3. Có: B x −3 x −3 x ðK: x > 0. A x+5 5 5 = = x+ ≥ 2. xi =2 5 B x x x => 5 x= ⇔ x = 5(TM ) Dấu "=" xảy ra x MinA = 2 5 ⇔ x = 5 Vậy Câu 2. (2,5 ñiểm) 1. Giải phương trình: x2 − 5x + 4 = 0 b) x + x − 6 = 0 4 2 a) 2 x − y = 7  2. Giải hệ phương trình:  x − 2 y = − 1 Hướng dẫn: x = 1 ( x 2 − 2) = 0 ⇔ x = ± 2 1. a) x − 5 x + 4 = 0 ⇔  x = 4 b) x + x − 6 = 0 ⇔ ( x − 2)( x + 3) = 0 ⇔  2 2 4 2 2 2  ( x + 3) = 0 (Vo ly )
  3. 2 x − y = 7 4 x − 2 y = 14 3x = 15 x = 5  2. x − 2 y = − 1 ⇔  ⇔  ⇔   x − 2 y = −1 x − 2 y = −1  y = 3 Câu 3. (1,0 ñiểm) Cho phương trình: x 2 + ax + b + 1 = 0 (a, b là các tham số). Tìm a, b ñể phương trình có 2 nghiệm x1, x2 thỏa  x1 − x2 = 3 mãn:  3  x1 − x2 = 9 3 Hướng dẫn: Ta có: ∆ = a − 4(b + 1) = a − 4b − 4 2 2 ∆ ≥ 0 ⇔ a 2 − 4b − 4 ≥ 0 ðể phương trình có nghiệm thì:  x1 − x2 = −a  x .x = b + 1 Theo Vi-Et ta có:  1 2  x1 − x2 = 3  x1 − x2 = 3  3 ⇔  ⇔ ( x1 + x2 ) 2 − x1 x2 = 3 x − x2 = 9 3 ( x1 − x2 )( x1 + x1 x2 + x2 ) = 9 2 2 Mà:  1 ⇔ ( − a)2 − b − 1 = 3 ⇔ b = a 2 − 4 b = a2 − 4 ∆ = a 2 − 4b − 4 = a 2 − 4(a 2 − 4) − 4 = −3a 2 + 12 Thay vào biểu thức Delta ta có: ∆ ≥ 0 ⇔ −3a 2 − 12 ≥ 0 ⇔ − 2 ≤ a ≤ 2 ðK: − a + ∆ − a + −3a + 12 −a − ∆ − a − −3a + 12 2 2 x1 = = ; x2 = = 2 2 2 2 => −a + −3a 2 + 12 −a − −3a 2 + 12 x1 − x2 = 3 => x1 − x2 = − =3 2 2 a =1 Do: => − 3a 2 + 12 = 9 =>  (TM ) => b = −3 a = − 1 a = ±1  Vậy b = −3 thì pt có nghiệm thỏa mãn ñề bài. Câu 4. (3,0 ñiểm) Cho tứ giác ABCD nội tiếp (O; R) và có hai ñường chéo AC, BD vuông góc với nhau tại I (I khác O). Kẻ ñường kính CE. 1. Chứng minh tứ giác ABDE là hình thang cân.
  4. 2. Chứng minh: AB 2 + CD 2 + BC 2 + AD 2 = 2 2 R. 3. Từ A, B kẻ các ñường thẳng vuông góc với CD lần lượt cắt BD, AC tại F và K. Tứ giác ABKF là hình gì? Hướng dẫn: B C O E K I A D N M F  = EBC 1. Có: EAC  = EDC  = 900 (Góc nt chắn nửa ñường tròn) ⇒ EA ⊥ AC ⇒ EA  BD ( ⊥ AC ) ⇒ EADB là hình thang (1)  BEC  = BCE = 900 Mà:    0 (cmt)  IDC = ICD = 90  = BDC =  1  Do: IDC ADC = BC (Góc nt chắn BC ) 2      => ICD = ACD = BCE => ⇒ EB = AD ⇒ EB = AD (2) Từ (1) và (2) => AEBD là hình thang cân. (ñpcm) 2. Có: AB 2 + CD 2 + BC 2 + AD 2 = ( ED 2 + CD 2 ) + ( BC 2 + EB 2 ) (Vì: AB = ED, AD = EB (cmt)) => AB 2 + CD 2 + BC 2 + AD 2 = (ED 2 + CD 2 ) + (BC 2 + EB 2 )
  5. = EC 2 + EC 2 = 2 EC 2 = 2.(2 R ) 2 = 2 2 R (ñpcm) 3. Giả sử : AF ⊥ CD = M ; BK ⊥ CD = N    => MCA = IFA (Cùng phụ với CAM ) ⇒ ∆ AFB cân tại A. => AB = AF (3)  = IAF ⇒ IAB  (ðường cao trong tam giác cân) Mà: BK // AF (cùng ⊥ DC )  = IAF ⇒ IKB  ( SLT ) ⇒ IKB  = IAB  (= IAF)  ⇒ ∆ ABK cân tại B => BA = BK (4) Từ (3) và (4) => AB = BK = AF. => AF//=BK => ABKF là HBH Mặt khác: => ABKF là hình thoi. Câu 5. (1,0 ñiểm) 1. Tìm nghiệm nguyên của phương trình: y 3 = x3 + x 2 + x + 1. 2. Cho các số nguyên a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng: A = (1 + a 2 )(1 + b 2 )(1 + c 2 ) là một số chính phương. Hướng dẫn: x3 + x 2 + x + 1 = 0 ⇔ ( x + 1)( x 2 + 1) = 0 1. Với y = 0 => ( x + 1) = 0 ( Do : x + 1 > 0 ∀ x) x = -1. 2 Với y ≠ 0 => y.y2 = (x + 1)(x2 + 1)  y = x +1 =>  y 2 = x 2 + 1 (Vì: x, y ∈ℤ ⇒ y < y , x + 1 < x + 1) 2 2  ( x + 1)2 = x 2 + 1 ⇔ x 2 + 2 x + 1 = x 2 + 1 ⇔ x = 0 => y = 1 Vậy pt có nghiệm là: (x;y) = (-1; 0) ; (0; 1) 2. Vì: ab+bc+ca = 1 => 1 + a2 = ab+bc+ca + a2 = (a+b)(a+c) (1) Tương tự: 1 + b2 = ab+bc+ca + b2 = (a+b)(b+c) (2) 1 + c2 = ab+bc+ca + c2 = (c+b)(a+c) (3)
  6. Từ (1), (2) và (3) => A = (a+b)2(b+c)2(c+a)2 => A là số CP (ñpcm)
ANTS
ANTS

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản