intTypePromotion=1
ADSENSE

Đồ án tốt nghiệp: Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước

Chia sẻ: Xylitol Lime Mint | Ngày: | Loại File: PDF | Số trang:83

65
lượt xem
22
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài “Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước” là phân loại sản phẩm theo hình dạng (hình tròn, hình vuông, hình chữ nhật, hình tam giác) và kích thước dựa trên ngôn ngữ Python với thư viện chính là OpenCV. Ở đây sử dụng các đặc điểm riêng biệt của từng hình dạng để đi nhận dạng và sau đó phân loại từng sản phẩm. Kết quả thực hiện của đề tài đã nhận dạng đƣợc những sản phẩm có hình dạng (hình tròn, hình vuông, hình chữ nhật, hình tam giác) cùng với việc biết được kích thước của từng sản phẩm.

Chủ đề:
Lưu

Nội dung Text: Đồ án tốt nghiệp: Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước

  1. BỘ GIÁO DỤC & ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM KỸ THUẬT TP. HỒ CHÍ MINH KHOA ĐIỆN – ĐIỆN TỬ BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH --------------------------------- ĐỒ ÁN TỐT NGHIỆP NGÀNH CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ TRUYỀN THÔNG ĐỀ TÀI: ỨNG DỤNG CAMERA 3D TRONG VIỆC PHÂN LOẠI SẢN PHẨM THEO HÌNH DẠNG VÀ KÍCH THƢỚC GVHD: ThS. Ngô Bá Việt SVTH: Lê Văn Thái MSSV: 14141289 Tp. Hồ Chí Minh - 07/2019
  2. BỘ GIÁO DỤC & ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM KỸ THUẬT TP. HỒ CHÍ MINH KHOA ĐIỆN – ĐIỆN TỬ BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH --------------------------------- ĐỒ ÁN TỐT NGHIỆP NGÀNH CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ TRUYỀN THÔNG ĐỀ TÀI: ỨNG DỤNG CAMERA 3D TRONG VIỆC PHÂN LOẠI SẢN PHẨM THEO HÌNH DẠNG VÀ KÍCH THƢỚC GVHD: ThS. Ngô Bá Việt SVTH: Lê Văn Thái MSSV: 14141289 Tp. Hồ Chí Minh - 07/2019
  3. TRƢỜNG ĐH SPKT TP. HỒ CHÍ MINH CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM KHOA ĐIỆN-ĐIỆN TỬ ĐỘC LẬP - TỰ DO - HẠNH PHÚC BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH ----o0o---- Tp. HCM, ngày 05 tháng 06 năm 2019 NHIỆM VỤ ĐỒ ÁN TỐT NGHIỆP Họ tên sinh viên: Lê Văn Thái MSSV: 14141289 Chuyên ngành: Kỹ thuật Điện - Điện tử Mã ngành: 01 Hệ đào tạo: Đại học chính quy Mã hệ: 1 Khóa: 2014 Lớp: 14141DT1A I. TÊN ĐỀ TÀI: ỨNG DỤNG CAMERA 3D TRONG VIỆC PHÂN LOẠI SẢN PHẨM THEO HÌNH DẠNG VÀ KÍCH THƢỚC II. NHIỆM VỤ 1. Các số liệu ban đầu: Các tài liệu về Python và thƣ viện OpenCV, Giáo trình Xử lý ảnh. Các ví dụ về nhận dạng hình học cơ bản. 2. Nội dung thực hiện: Tìm hiểu phƣơng pháp nhận dạng và phân loại sản phẩm. Tổng quan về xử lý ảnh. Tìm hiểu Camera 3D và các Module liên quan. Viết chƣơng trình trên Python. Hoàn thành mô hình. Đánh giá kết quả thực hiện. III. NGÀY GIAO NHIỆM VỤ: 26/03/2019 IV. NGÀY HOÀN THÀNH NHIỆM VỤ: 05/06/2019 V. HỌ VÀ TÊN CÁN BỘ HƢỚNG DẪN: ThS. Ngô Bá Việt CÁN BỘ HƢỚNG DẪN BM. ĐIỆN TỬ CÔNG NGHIỆP – Y SINH
  4. TRƢỜNG ĐH SPKT TP. HỒ CHÍ MINH CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM KHOA ĐIỆN-ĐIỆN TỬ ĐỘC LẬP - TỰ DO - HẠNH PHÚC BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH ----o0o---- Tp. HCM, ngày 05 tháng 06 năm 2019 LỊCH TRÌNH THỰC HIỆN ĐỒ ÁN TỐT NGHIỆP Họ tên sinh viên: Lê Văn Thái Lớp: 14141DT1A - MSSV: 14141289 Tên đề tài: Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thƣớc Xác nhận Tuần/ngày Nội dung GVHD 16-20/3 Chọn đề tài 21-25/3 Viết đề cƣơng chi tiết 26/3-05/4 Tìm hiểu phƣơng pháp nhận dạng hình cơ bản 06/-09/4 Tìm hiểu thuật toán dán nhãn 10-17/4 Tìm hiểu camera 3D 18-21/4 Tìm hiểu thuật toán tính khoảng cách 22-28/4 Tìm hiểu thuật toán tính kích thƣớc 29/5-04/5 Tìm hiểu về python 05-06/5 Thực hiện viết code python trên window 07-08/5 Làm các hình khối (sản phẩm) và chạy thử
  5. 13-20/5 Hoàn thành mô hình 21-29/5 Viết báo cáo GV HƢỚNG DẪN ThS. Ngô Bá Việt
  6. LỜI CAM ĐOAN Đề tài này là tôi tự thực hiện dựa vào một số tài liệu trƣớc đó và không sao chép từ tài liệu hay công trình đã có trƣớc đó. Ngƣời thực hiện đề tài Lê Văn Thái
  7. LỜI CẢM ƠN Đầu tiên tôi xin đƣợc cám ơn chân thành tới Thầy Ngô Bá Việt, Thầy đã tận tình hƣớng dẫn tôi để có thể hoàn thành tốt đề tài. Tôi xin gửi lời chân thành cảm ơn các thầy cô trong Khoa Điện-Điện Tử đã tạo những điều kiện tốt nhất cho tôi hoàn thành đề tài. Những kiến thức bổ ích mà các Thầy Cô dạy, nó đƣợc áp dụng vào đề tài Đồ Án Tốt Nghiệp rất nhiều, từ những kiến thức nhỏ nhặt cho tới những bài học lớn. Một lần nữa tôi xin đƣợc gửi lời cám ơn đến tất cả Thầy Cô, nếu không có Thầy Cô thì chắc giờ này tôi sẽ khó có thể hoàn thành đề tài này. Tiếp theo tôi cũng xin cảm ơn tới các Anh, Chị khóa trên cùng các bạn sinh viên đã tạo điều kiện giúp đỡ, từ những tài liệu liên quan tới đề tài cho tới những kinh nghiệm sống thực tế. Nhờ họ mà tôi mới có thể phát triển đƣợc. Tôi cũng gửi lời đồng cảm ơn đến các bạn lớp 14141DT1A đã chia sẻ trao đổi kiến thức cũng nhƣ những kinh nghiệm quý báu trong thời gian thực hiện đề tài, và cũng là lớp học có nhiều kí ức nhất thời sinh viên của tôi. Cuối cùng là gửi lời cảm ơn đến Cha, Mẹ nếu không có hai đấng sinh thành thì ngày hôm nay cũng không có ai hiện diện ở đây để thực hiện những việc mình muốn, họ đã tạo mọi điều kiện để giúp con của mình hƣớng tới một tƣơng lai tốt đẹp. Một lần cuối xin chân thành cảm ơn! Ngƣời thực hiện đề tài Lê Văn Thái
  8. MỤC LỤC Trang bìa .................................................................................................................... i Nhiệm vụ đồ án ......................................................................................................... ii Lịch trình ................................................................................................................ iii Cam đoan ................................................................................................................ iv Lời cảm ơn ................................................................................................................ v Mục lục .................................................................................................................... vi Liệt kê hình vẽ ......................................................................................................... ix Liệt kê bảng vẽ ......................................................................................................... xi Tóm tắt ................................................................................................................... xii CHƢƠNG 1: TỔNG QUAN ........................................................................................1 1.1 ĐẶT VẤN ĐỀ ................................................................................................1 1.2 MỤC TIÊU .....................................................................................................1 1.3 NỘI DUNG NGHIÊN CỨU ............................................................................1 1.4 GIỚI HẠN ......................................................................................................2 1.5 BỐ CỤC..........................................................................................................2 CHƢƠNG 2: CƠ SỞ LÝ THUYẾT .............................................................................4 2.1 TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ CÁC THƢ VIỆN LIÊN QUAN ............4 2.1.1 Giới thiệu xử lý ảnh. .................................................................................4 2.1.2 Những vấn đề trong xử lý ảnh...................................................................4 2.2 PHƢƠNG PHÁP PHÂN LOẠI SẢN PHẨM THEO HÌNH DẠNG .............. 11 2.2.1 Các hình dạng cơ bản của sản phẩm........................................................ 11 2.2.2 Phƣơng pháp nhận dạng sản phẩm theo hình dạng .................................. 11 2.2.3 Các bƣớc thực hiện phân loại sản phẩm theo hình dạng .......................... 14
  9. 2.3 ÁP DỤNG KỸ THUẬT HIỆU CHỈNH STEREO CAMERA ĐỂ TÍNH KÍCH THƢỚC SẢN PHẨM ............................................................................................. 18 2.3.1 GIỚI THIỆU KỸ THUẬT HIỆU CHỈNH STEREO CAMERA ............. 18 2.3.2 STEREO CAMERA ............................................................................... 19 2.3.3 PHƢƠNG PHÁP HIỆU CHỈNH CHUẨN .............................................. 23 2.4 NGÔN NGỮ PYTHON ................................................................................ 25 2.5 GIỚI THIỆU PHẦN CỨNG ......................................................................... 28 CHƢƠNG 3: TÍNH TOÁN VÀ THIẾT KẾ ........................................................... 29 3.1 GIỚI THIỆU ................................................................................................. 29 3.2 THIẾT KẾ HỆ THỐNG PHẦN CỨNG ........................................................ 29 3.2.1 Khối xử lý............................................................................................... 30 3.2.2 Khối thu tín hiệu ..................................................................................... 30 3.2.3 Khối hiển thị ........................................................................................... 32 3.2.4 Khối giao tiếp và điều khiển ................................................................... 32 3.2.5 Khối nguồn ............................................................................................. 32 3.3 CÁC TÍNH TOÁN TRONG NHẬN DẠNG ................................................. 33 3.3.1 Giới thiệu đặc điểm của hình dạng .......................................................... 33 3.3.2 Phƣơng pháp tính toán các đặc điểm ....................................................... 33 CHƢƠNG 4: THI CÔNG HỆ THỐNG .................................................................. 36 4.1 GIỚI THIỆU ................................................................................................. 36 4.2 THI CÔNG HỆ THỐNG ............................................................................... 36 4.2.1 Các linh kiện và model cần thiết cho mô hình ......................................... 36 4.2.2 Kết nối, lắp ráp và kiểm tra mô hình ....................................................... 36 4.3 THI CÔNG MÔ HÌNH.................................................................................. 37
  10. 4.4 LẬP TRÌNH HỆ THỐNG ............................................................................. 38 4.4.1 Lƣu đồ giải thuật..................................................................................... 38 4.4.2 Lập trình với ngôn ngữ Python cùng thƣ viện OpenCV .......................... 44 4.5 MÔ PHỎNG ................................................................................................. 45 4.5.1 Lƣu đồ .................................................................................................... 45 4.5.2 Xử lý tín hiệu hay hình ảnh..................................................................... 46 4.6 VIẾT TÀI LIỆU HƢỚNG DẪN SỬ DỤNG, THAO TÁC ............................ 48 4.6.1 Viết tài liệu hƣớng dẫn sử dụng .............................................................. 48 4.6.2 Quy trình thao tác ................................................................................... 50 CHƢƠNG 5: KẾT QUẢ_NHẬN XÉT_ĐÁNH GIÁ ................................................. 52 5.1 CAMERA 3D................................................................................................ 52 5.2 XÁC ĐỊNH MÀU SẮC CỦA SẢN PHẨM................................................... 52 5.3 NHẬN DẠNG VÀ TÍNH KÍCH THƢỚC SẢN PHẨM ................................ 54 5.4 PHÂN LOẠI SẢN PHẨM ............................................................................ 58 CHƢƠNG 6: KẾT LUẬN VÀ HƢỚNG PHÁT TRIỂN ........................................ 60 6.1 KẾT LUẬN................................................................................................... 60 6.1.1 Kết quả đạt đƣợc..................................................................................... 60 6.1.2 Những mặt hạn chế ................................................................................. 60 6.2 HƢỚNG PHÁT TRIỂN ................................................................................ 60
  11. LIỆT KÊ HÌNH VẼ Hình Trang Hình 2.1: Lân cận 4 và lân cận 8...................................................................................6 Hình 2.2: Hình tách biên...............................................................................................8 Hình 2.3: Bộ lọc Gaussian ............................................................................................9 Hình 2.4: Đặc điểm hình chữ nhật .............................................................................. 12 Hình 2.5: Đặc điểm hình vuông .................................................................................. 13 Hình 2.6: Đặc điểm hình tam giác .............................................................................. 13 Hình 2.7: Sơ đồ các bƣớc thực hiện phân loại sản phẩm ............................................. 14 Hình 2.8: Xác định biên.............................................................................................. 16 Hình 2.9: Nhận dạng đƣờng biên ................................................................................ 17 Hình 2.10: Cấu hình chuẩn của hệ thống 2 camera ..................................................... 19 Hình 2.11: Hệ thống tọa độ của một stereo camera ..................................................... 19 Hình 2.12: Thuật toán SAD phân vùng ....................................................................... 22 Hình 2.13: Qui tắc tam giác đồng dạng ....................................................................... 23 Hình 2.14: Mô hình các thông số của camera ............................................................. 24 Hình 2.15: Sơ đồ khối của camera .............................................................................. 28 Hình 3.1: Sơ đồ khối................................................................................................... 30 Hình 3.2: Khối thu tín hiệu ......................................................................................... 31 Hình 3.3: Synchronization USB Stereo Webcam Dual lens camera OV9750 960P MJPEG 2560x960 with No distortion lens 3D usb camera module ............................. 31 Hình 3.4: Laptop ........................................................................................................ 32 Hình 3.5: Đỉnh của hình ............................................................................................. 33
  12. Hình 3.6: Đoạn Ramer-Douglas-Peucker .................................................................... 34 Hình 3.7: Đƣờng xấp xỉ .............................................................................................. 34 Hình 3.8: Độ dài cạnh................................................................................................. 34 Hình 4.1: Kết nối Camera ........................................................................................... 37 Hình 4.2: Các khối hộp (Hình dạng sản phẩm) ........................................................... 38 Hình 4.3: Lƣu đồ giải thuật chính ............................................................................... 39 Hình 4.4: Ma trận không gian màu BGR .................................................................... 40 Hình 4.5: Sơ đồ khối chƣơng trình con tách biên và lấp đầy biên................................ 41 Hình 4.6: Lƣu đồ con nhận dạng sản phẩm ................................................................. 43 Hình 4.7: Tìm kiếm Python ........................................................................................ 44 Hình 4.8: Tạo project mới........................................................................................... 45 Hình 4.9: Lƣu đồ mô phỏng........................................................................................ 45 Hình 4.10: Kiểm tra các bƣớc thực hiện...................................................................... 46 Hình 4.11: Ảnh xám ................................................................................................... 47 Hình 4.12: Tách biên .................................................................................................. 47 Hình 4.13: Lấp đầy biên ............................................................................................. 48 Hình 4.14: Kết quả nhận dạng phân loại sản phẩm. .................................................... 48 Hình 4.15: Kiểm tra thƣ viện ...................................................................................... 49 Hình 4.16: Kết quả sau khi bấm chạy chƣơng trình .................................................... 49 Hình 4.17: Quy trình vận hành ................................................................................... 50 Hình 5.1: Kết quả ảnh đầu vào từ camera ................................................................... 52 Hình 5.2: Kết quả nhận dạng màu sắc sản phẩm của camera....................................... 53 Hình 5.3: Nhận dạng và tính kích thƣớc sản phẩm hình chữ nhật................................ 54 Hình 5.4: Nhận dạng và tính kích thƣớc sản phẩm hình vuông ................................... 54
  13. Hình 5.5: Nhận dạng và tính kích thƣớc sản phẩm hình tam giác ................................ 55 Hình 5.6: Camera chƣa thể nhận dạng cùng lúc nhiều sản phẩm ................................. 57 Hình 5.7: Phân loại theo kích sản phẩm hình chữ nhật................................................ 58 Hình 5.8: Phân loại theo kích thƣớc sản phẩm hình tam giác ...................................... 58 Hình 5.9: Phân loại theo kích thƣớc sản phẩm hình tam giác ...................................... 59
  14. LIỆT KÊ BẢNG Bảng Trang Bảng 2.1: Đặc điểm hình dạng sản phẩm .................................................................... 14 Bảng 4.1: Danh sách các model và linh kiện liên quan................................................ 36 Bảng 5.1: Thống kê kết quả nhận dạng màu sắc sản phẩm .......................................... 53 Bảng 5.2: Kết quả khảo sát nhận dạng và tính kích thƣớc đối với hình vuông............. 55 Bảng 5.3: Kết quả khảo sát nhận dạng và tính kích thƣớc đối với hình chữ nhật ......... 55 Bảng 5.4: Kết quả khảo sát nhận dạng và tính kích thƣớc đối với hình tam giác ......... 57
  15. TÓM TẮT Hiện nay, nền Công nghiệp đang hƣớng tới Công nghiệp 4.0, là sự kết hợp các Công nghệ lại với nhau, làm mờ ranh giới giữa Vật lý, Kỹ thuật số và Sinh học. Từ đó, các thiết bị điện tử thông minh đang ngày càng xuất hiện phổ biến. Không những nó giúp ích cho cá nhân hay gia đình, mà còn ứng dụng cả trong Chính trị, Y tế, Giáo dục...Điển hình là trong lĩnh sản xuất, vấn đề phân loại sản phẩm trong sản xuất là không thể thiếu ở khâu đóng gói. Chính vì vậy, nhóm đã chọn đề tài “Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thƣớc” Đề tài “Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước” là phân loại sản phẩm theo hình dạng (hình tròn, hình vuông, hình chữ nhật, hình tam giác) và kích thƣớc dựa trên ngôn ngữ Python với thƣ viện chính là OpenCV. Ở đây sử dụng các đặc điểm riêng biệt của từng hình dạng để đi nhận dạng và sau đó phân loại từng sản phẩm. Kết quả thực hiện của đề tài đã nhận dạng đƣợc những sản phẩm có hình dạng (hình tròn, hình vuông, hình chữ nhật, hình tam giác) cùng với việc biết đƣợc kích thƣớc của từng sản phẩm.
  16. CHƢƠNG 1: TỔNG QUAN CHƢƠNG 1: TỔNG QUAN 1.1 ĐẶT VẤN ĐỀ Cùng với sự phát triển ngày càng mạnh mẽ của khoa học kĩ thuật trong một vài thập kỷ gần đây, xử lý ảnh tuy là một ngành khoa học còn tƣơng đối mới mẻ so với nhiều ngành khoa học khác nhƣng hiện nay đang là một trong những lĩnh vực phát triển rất nhanh và thu hút sự quan tâm đặc biệt từ các nhà khoa học, thúc đẩy các trung tâm nghiên cứu, ứng dụng về lĩnh vực hấp dẫn này. Xử lý ảnh đóng vai trò quan trọng trong nhiều ứng dụng thực tế về khoa học kĩ thuật cũng nhƣ trong cuộc sống thƣờng ngày nhƣ: sản xuất và kiểm tra chất lƣợng, sự di chuyển của Robot, các phƣơng tiện đi lại tự trị, công cụ hƣớng dẫn cho ngƣời mù, an ninh và giám sát, nhận dạng đối tƣợng, nhận dạng mặt, các ứng dụng trong y học, sản xuất, hiệu chỉnh video. Camera 3D [1-2] hiện đang là loại camera có độ ứng dụng cao trong khoa học kỹ thuật vì camera này có khả năng ghi nhận chiều sâu đối tƣợng, tƣơng tự mắt con ngƣời. Dựa trên các nghiên cứu trƣớc đây nhƣ “Phân loại sản phẩm dùng Kit Raspberry” [3] là một ứng dụng sử dụng các thuật toán xử lý ảnh [4] trên nền tảng Python kết hợp với phần cứng là Raspberry [5] để phân loại sản phẩm dựa trên hình dạng. Đề tài “Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thƣớc” đƣơc lựa chọn thực hiện để có thể phân loại theo hình dạng sản phẩm và phân loại theo kích thƣớc sản phẩm dựa trên các thông tin từ camera 3D. 1.2 MỤC TIÊU - Tìm hiểu về camera 3D và ngôn ngữ lập trình python với thƣ viện OpenCV. - Phân loại sản phẩm theo hình dạng và kích thƣớc. 1.3 NỘI DUNG NGHIÊN CỨU Để tài “Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thƣớc” Có những nội dung sau: BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH 1
  17. CHƢƠNG 1: TỔNG QUAN  NỘI DUNG 1: Tìm hiểu phƣơng pháp nhận dạng và phân loại sản phẩm theo hình dạng và kích thƣớc.  NỘI DUNG 2: Tổng quan về xử lý ảnh.  NỘI DUNG 3: Tìm hiểu camera 3D và các module liên quan.  NỘI DUNG 4: Viết chƣơng trình trên python.  NỘI DUNG 5: Hoàn thành mô hình.  NỘI DUNG 6: Đánh giá kết quả thực hiện 1.4 GIỚI HẠN Với đề tài “Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thƣớc” thì các giới hạn bao gồm: - Thiết kế mô hình sử dụng camera 3D để phân loại sản phẩm theo hình dạng, kích thƣớc. - Sử dụng ngôn ngữ lập trình python. - Mô hình hoạt động trong điều kiện lý tƣởng, đủ độ sáng. 1.5 BỐ CỤC  Chƣơng 1: Tổng quan Chƣơng này trình bày đặt vấn đề dẫn nhập lý do chọn đề tài, mục tiêu, nôi dung nghiên cứu, các giới hạn thông số và bố cục đồ án.  Chƣơng 2: Cơ sở lý thuyết Chƣơng này sẽ trình bày cơ bản về xử lý ảnh, phƣơng pháp cơ bản để nhận dạng và phân loại ảnh, tính kích thƣớc sản phẩm, giới thiệu cơ bản về camera 3D và thƣ viện liên quan.  Chƣơng 3: Thiết kế và tính toán Chƣơng này sẽ đi tìm hiểu kỹ các thuật toán nhận dạng sản phẩm theo hình dạng, thuật toán tính kích thƣớc và thiết kế mô hình sản phẩm.  Chƣơng 4: Thi công hệ thống BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH 2
  18. CHƢƠNG 1: TỔNG QUAN Nội dụng chƣơng này là quá trình thi công cùng với việc chạy chƣơng trình về phân loại sản phẩm cũng nhƣ tính kích thƣớc sản phẩm.  Chƣơng 4: Kết quả nhận xét và đánh giá Nội dụng chƣơng này là tổng hợp các kết quả đạt đƣợc sau khi thi công mô hình và kết quả đạt đƣợc khi phân loại sản phẩm.  Chƣơng 5: Kết luận và hƣớng phát triển Kết quả nhận đƣợc khi hoàn thiện đề tài, đƣa ra các hƣớng phát triển hoàn thiện. BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH 3
  19. CHƢƠNG 2: CƠ SỞ LÝ THUYẾT CHƢƠNG 2: CƠ SỞ LÝ THUYẾT 2.1 TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ CÁC THƢ VIỆN LIÊN QUAN 2.1.1 Giới thiệu xử lý ảnh Xử lý ảnh không còn là đề tài quá mới, nó đƣợc áp dụng từ trong các hoạt động thƣờng ngày cho đến việc nâng cao sản xuất. Nó giúp ích cho cá nhân hay gia đình, mà còn ứng dụng cả trong Chính trị, Y tế, Giáo dục… Xử lý tín hiệu là một môn học trong kỹ thuật điện tử, viễn thông và trong toán học. Liên quan đến nghiên cứu và xử lý tín hiệu kỹ thuật số và analog, giải quyết các vấn đề về lƣu trữ, các thành phần bộ lọc, các hoạt động khác trên tín hiệu. Các tín hiệu này bao gồm truyền dẫn tín hiệu, âm thanh hoặc giọng nói, hình ảnh, và các tín hiệu khác… Trong số các phƣơng pháp xử lý tín hiệu kể trên, lĩnh vực giải quyết với các loại tín hiệu mà đầu vào là một hình ảnh và đầu ra cũng là một hình ảnh, sản phẩm đầu ra đƣợc thực hiện trong một quá trình xử lý. Đó chính là quá trình xử lý ảnh. Nó có thể đƣợc chia thành xử lý hình ảnh tƣơng tự và xử lý hình ảnh kỹ thuật số. Để có 1 bức ảnh số ta có quá trình thực hiện nhƣ sau: Chụp ảnh từ một máy ảnh là một quá trình vật lý. Ánh sáng mặt trời sử dụng nhƣ một nguồn năng lƣợng. Một dãy cảm biến đƣợc sử dụng cho việc thu lại của hình ảnh. Vì vậy, khi ánh sáng mặt trời rơi trên ngƣời đối tƣợng, sau đó số lƣợng ánh sáng phản xạ của đối tƣợng đƣợc cảm nhận từ các cảm biến, và một tín hiệu điện áp liên tục đƣợc tạo ra bởi số lƣợng dữ liệu cảm biến đó. Để tạo ra một hình ảnh kỹ thuật số, chúng ta cần phải chuyển đổi dữ liệu này thành một dạng kỹ thuật số. Điều này liên quan đến việc lấy mẫu và lƣợng tử hóa. Kết quả của việc lấy mẫu và lƣợng tử hóa sau một quá trình xử lý là một hình ảnh kỹ thuật số. 2.1.2 Những vấn đề trong xử lý ảnh Điểm ảnh BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH 4
  20. CHƢƠNG 2: CƠ SỞ LÝ THUYẾT Là đơn vị cơ bản nhất để tạo nên một bức ảnh kỹ thuật số, địa chỉ của điểm ảnh đƣợc xem nhƣ là một tọa độ (x,y) nào đó. Một bức ảnh kỹ thuật số - có thể đƣợc tạo ra bằng cách chụp hoặc bằng một phƣơng pháp đồ họa nào khác - đƣợc tạo nên từ hàng ngàn hoặc hàng triệu pixel riêng lẻ. Bức ảnh càng chứa nhiều pixel thì càng chi tiết. Một triệu pixel thì tƣơng đƣơng với 1 megapixel. Ảnh số Ảnh số là tập hợp hữu hạn các điểm ảnh với mức xám phù hợp dùng để mô tả ảnh gần với ảnh thật. Số điểm ảnh xác định độ phân giải của ảnh. Ảnh có độ phân giải càng cao thì càng thể hiện rõ nét các đặt điểm của tấm hình càng làm cho tấm ảnh trở nên thực và sắc nét hơn. Một hình ảnh là một tín hiệu hai chiều. Nó đƣợc xác định bởi hàm toán học f(x, y) trong đó x và y là hai tọa độ theo chiều ngang và chiều dọc. Các giá trị của f(x, y) tại bất kỳ điểm nào là cung cấp các giá trị điểm ảnh (pixel ) tại điểm đó của một hình ảnh. Phân loại ảnh Mức xám của điểm ảnh là cƣờng độ sáng, gán bằng một giá trị tại điểm đó. Các mức ảnh xám thông thƣờng: 16, 32, 64, 128, 256. Mức đƣợc sử dụng thông dụng nhất là 256, tức là dùng 1byte để biểu diễn mức xám. Ảnh nhị phân: Là ảnh có 2 mức trắng và đen. Chỉ có 2 giá trị 0 và 1 và chỉ sử dụng 1 bit dữ liệu trên 1 điểm ảnh. Ảnh đen trắng: Là ảnh có hai màu đen, trắng (không chứa màu khác) với mức xám ở các điểm ảnh có thể khác nhau. Ảnh màu: Là ảnh kết hợp của 3 màu cơ bản lại với nhau để tạo ra một thế giới màu sinh động. Ngƣời ta thƣờng dùng 3byte để mô tả mức màu, tức là có khoảng 16,7 triệu mức màu. Quan hệ giữa các điểm ảnh Lân cận điểm ảnh: đƣợc nói một cách hài hƣớc nhƣ là hàng xóm của các điểm ảnh. Có 2 loại lân cận cơ bản là lân cận 4 và lân cận 8. BỘ MÔN ĐIỆN TỬ CÔNG NGHIỆP – Y SINH 5
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2