intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Hàm Logic Trong Thiết Bị Đi part part 18

Chia sẻ: Dwqdqwdqwd Dqwdqwd | Ngày: | Loại File: PDF | Số trang:11

71
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tăng dòng điện định mức, tăng công suất ngắt, nâng cao tác động nhanh, tác động nhanh nhiều lần của AB (đóng lặp lại tự động), tăng độ chống ăn mòn của các bộ phận cơ và của cách điện; vận chuyển, lắp ráp, vận hành thuận tiện, an toàn về nổ và hỏa hoạn

Chủ đề:
Lưu

Nội dung Text: Hàm Logic Trong Thiết Bị Đi part part 18

  1. 2) Tất cả các khối lượng đẳng trị phân tán trong bộ phận cơ khí được thay thế bằng một khối lượng qui đổi tập trung ở một số điểm qui đổi. Các điểm động của liên hợp khớp nối thường là điểm đẳng trị cho mỗi khâu. Khi xác định các khối lượng đẳng trị, người ta dựa vào các điều kiện cần thiết về sự không thay đổi của các tính chất động và tĩnh của bộ phận cơ khí trong phép đẳng trị, nghĩa là: b 2 a 3 1 01 02 Khâu 1 Khâu 2 a1 a2 l l 1 2 b2 b1 Hình 9-8. Sơ đồ tính toán của cơ cấu bốn khâu. + Tổng các khối lượng đẳng trị phải bằng khối lượng phân tán của khâu: ∑ mi = m + Trọng tâm của các khối lượng đẳng trị của khâu phải trùng với trọng tâm của khâu. Đối với khâu cơ khí phẳng: ∑ mi x i = 0 ∑m y =0 i i + Mô men quán tính của các khối lượng đẳng trị đối với trọng tâm của khâu phải bằng mô men quán tính của khâu: ∑ m i ri2 = JS Trong đó: m : khối lượng của khâu. xi, yi : tọa độ của điểm đặt khối lượng đẳng trị (trọng tâm của khâu trong hệ tọa độ). ri : khoảng cách của điểm đặt khối lượng đến trọng tâm của khâu. JS : mô men quán tính của khâu đối với trọng tâm của nó. 203
  2. Xuất phát từ điều kiện cần thiết bảo toàn động năng, tiến hành qui đổi tất cả các khối lượng đẳng trị của bộ phận khí về một điểm: 1 i =n 1 A ân = ∑ m i v i2 = m qâ v qâ (9-6) 2 2 i =1 2 Từ đó rút ra rằng, khối lượng qui đổi của bộ phận cơ khí về một điểm có thể tính theo công thức: 2 ⎛v ⎞ i =n m qâ = ∑ m i ⎜ i ⎟ (9-7) ⎜v ⎟ ⎝ qâ ⎠ i =1 Trong đó mqđ là khối lượng qui đổi. mi : khối lượng đẳng trị ở một số điểm i của bộ phận cơ khí. vi : tốc độ chuyển động của điểm i. vqđ : tốc độ điểm qui đổi đối với vị trí phải xét của bộ phận cơ khí. Ở dưới đây cho ví dụ về phương pháp tính khối lượng đẳng trị cho từng khớp nối động của bộ phận cơ khí phẳng bốn khâu hình 9-8. Khâu 1 và 3 chuyển động quay xung quanh các trục đi qua điểm O1, O2 vuông góc với mặt phẳng quay, khâu 2 chuyển động quay tiến. Khối lượng đẳng trị của khâu tập trung ở điểm a, có thể tính theo phương trình: J m 1a = 01 l1 2 Trong đó: J01 :mô men quán tính tương đối của khâu 1 với trục quay, đối với hình dạng cụ thể và kích thước của khâu tính mô men quán tính theo công thức: γ J01 ≈ b J'01 g π.r12 ( ) al1 2 (l 1 + 0,4r1 )2 J01 = a + b + 3l 1 + 1,3r1 + ' 2 4 12 2 Cũng như vậy tính khối lượng đẳng trị của khâu 3 tập trung ở điểm b: J m 3b = 03 l2 3 Nếu giả thiết rằng, trọng tâm của khâu 2 đi qua tâm hình học của diện tích khâu, thì khối lượng đẳng trị của khâu này tập trung ở các điểm a và b có thể tính theo phương trình: 4J m 2a = m 2b = 2S2 l2 JS2 : mô men quán tính tương đối của khâu 2 với trục qua trọng tâm và vuông góc với mặt phẳng quay. Cũng có thể tính khối lượng đẳng trị của thanh kép chuyển động quay bằng cách thay thế nó bằng một thanh mỏng chiều dài l với khối lượng phân tán đều. Khối lượng đẳng trị với các điểm a và b: 204
  3. m a = m 1a + m 2a m b = m 2b + m 3b Khi tính các bộ phận cơ khí phức tạp nhiều điểm đẳng trị, các giá trị về khối lượng đẳng trị của từng điểm nên lập thành bảng, sau đó cộng tổng lại: Với trường hợp đang xét bảng này có dạng như sau: Khâu, Mối a b 1 m1a - 2 m2a m2b 3 - m3b Σmia Σmib Trong khi tính khối lượng qui đổi mqđ theo phương trình (9-7), tỉ số của tốc độ cho v từng vị trí của bộ phận cơ khí i = f (h) được xác định theo biểu đồ của các tốc độ dựng v qâ cho các vị trí đó với tỉ lệ tùy ý (vì trị số phải tìm không phải là giá trị tuyệt đối của tốc độ mà là tỉ số của chúng). Cần chú ý, trong nhiều trường hợp khi trọng lượng và khối lượng của các phần nối liền với hệ thống tiếp điểm tuyệt đối lớn, thì tính khối lượng qui đổi là không đổi trên suốt chu trình (điều này không ảnh hưởng nhiều trong tính toán). Trong trường hợp này có thể tính khối lượng qui đổi gần đúng theo các phương trình (9-6) và (9-7), dựa vào biểu đồ các tốc độ chỉ dựng cho một vị trí (đóng) hay theo công thức: p m qâ ≈ b , [ kg.s2 / m] (9-8) g Trong đó: pb : trọng lượng qui đổi. g : gia tốc trọng lực. Có lực ma sát qui đổi trong truyền động cơ khí là do các nguyên nhân: 1) Ma sát ở các khớp nối và các bộ phận dẫn hướng pmsk. 2) Ma sát ở tiếp điểm pmst. Trị số của lực ma sát và mô men lực ma sát phụ thuộc vào phản lực tĩnh tác động ở điểm đó và lực quán tính. Vì tĩnh lực và lực quán tính ở các vị trí khác nhau của bộ phận cơ khí và hệ số ma sát không phải là không đổi, tính chính xác các lực ma sát ở các bộ phận cơ khí có sơ đồ phức tạp rất công phu và khó khăn. Trong trường hợp chung tính lực ma sát qui đổi được tiến hành theo các trình tự sau: 1) Xác định phản lực ở các bộ phận dẫn hướng và các khớp nối cho các vị trí khác nhau của bộ phận dẫn khí. 2) Theo các giá trị tìm được của phản lực xác định lực ma sát và mô men ma sát cho từng khớp (ở các bộ phận dẫn hướng). 205
  4. 3) Qui các lực và mô men ma sát tìm được cho từng khớp về một điểm qui đổi, khi đó ta sử dụng các đẳng thức: dhi ⎫ pqâmsi = pmsi d hqâ ⎪ ⎪ (9-9) dα i ⎬ ⎪ pqâmsi = M msi d hqâ ⎪ ⎭ pqđmsi :lực ma sát qui đổi đối với mối thứ i. pmsi :lực ma sát ở mối thứ i. Mmsi : mô men ma sát ở mối thứ i. dα i dhi Tìm các đạo hàm và bằng cách dựng các đặc tuyến động học. dhqâ dhqâ Cách tính phản lực ở các khớp nối và bộ phận dẫn hướng có tính đến ma sát có trong các giáo trình và công trình nghiên cứu khác, ở đây vấn đề này không xét tới. Trong nhiều trường hợp người ta sử dụng các phương pháp đơn giản để tính lực ma sát qui đổi, bản chất của chúng là: 1) Chỉ tính ma sát do tĩnh lực lớn nhất tác động ở các khớp nối nhiều phụ tải nhất. Lực ma sát trên một hành trình được chấp nhận là không đổi. 2) Trong những trường hợp lực quán tính lớn hơn tĩnh lực thì tính ma sát do lực quán tính gây ra. Như ở trên lực ma sát xem như không đổi. Trong cả hai trường hợp người ta tính hệ số ma sát là không đổi. Thủy lực cản trong các truyền động cơ khí có: 1) Khi các bộ phận cơ khí chuyển động ở trong môi trường chất lỏng có độ nhớt. 2) Khi pít tông cột dầu của hệ thống thổi dầu cưỡng bức của buồng dập hồ quang chuyển động (ví dụ trong máy ngắt xung). 3) Khi bộ phận chống rung tác động (của máy ngắt dầu hay của máy ngắt không khí). Hướng của thủy lực cần ngược chiều với hướng chuyển động của vật, trong dạng chung biểu hiện bằng phương trình: v2 p tli = CR Fγ i (9-10) 2g Trong đó: CR : hệ số cản phụ thuộc vào hệ số Raynol và hình dáng của vật. F : diện tích hình chiếu của vật trên mặt phẳng vuông góc với hướng chuyển động. γ : tỉ trọng của môi trường, vi : tốc độ tương đối của chuyển động. g : gia tốc trọng lực. Thật ra, khi chuyển động trong dầu mỗi điểm của khâu cơ khí có tốc độ khác nhau, xác định chính xác thủy lực cản qui đổi gặp rất nhiều khó khăn. Cho nên, khi tính toán thực tế thường đơn giản dựa trên cơ sở: 206
  5. 1) Chỉ tính thủy lực cản tác động vào những phần cơ khí có tốc độ chuyển động tương đối lớn nhất và có kích thước tương đối lớn như: các xà tiếp điểm, các cần tác động, .. 2) Thay đổi hình dáng phức tạp của các thành phần đơn giản hơn theo hệ số thủy lực cản kinh nghiệm Ctl. Các giá trị của Ctl cho ở bảng 9-4. Chúng ta sẽ nghiên cứu phương pháp tính thủy lực cần ptl tác động vào thành ngang của máy ngắt dầu, nếu thanh ngang chuyển động trong dầu với tốc độ v. Chúng ta sẽ xét chuyển động của mối này giống như chuyển động của bốn vật liên quan lẫn nhau: thanh ngang tiếp điểm, cần và hai thanh tiếp điểm . Đưa mỗi chi tiết đó về dạng hình trụ, ta tìm giá trị số lượng Raynol theo công thức: v.d Re = υ Trong đó: v : tốc độ chuyển động, m/s. υ : hệ số độ nhớt động của môi trường, m2/s. d : đường kính, m. Phù hợp với các giá trị Rl tìm được, theo bảng ta tìm được các giá trị của hệ số cản Ctl và từ công thức (9-10), ta xác định các giá trị của lực cho các giá trị tốc độ v cho trước khác nhau. Các phương pháp tính lực hãm của các thiết bị chống rung có trong các công trình nghiên cứu khác nhau. Tác động của lực điện động vào các phần dẫn điện di động và cố định ảnh hưởng đến đặc điểm về chuyển động của bộ phận truyền động cơ khí, hơn nữa ảnh hưởng ở mức độ ít trong khi mở và mức độ nhiều khi đóng máy ngắt có dòng điện lớn. Bảng 9-4: Các giá trị của hệ số thủy lực cản Số TT Hình dạng vật Hệ số cản Hệ số Raynol(Re) 207
  6. .2.104
  7. x : tọa độ của điểm qui đổi. p0 : lực tổng qui đổi không đổi, bằng trọng lực qui đổi, lực ma sát qui đổi,... Trong trường hợp này lực tổng là lực hãm có hướng ngược chiều với chuyển động. Trong trường hợp nếu lúc này là lực gia tốc, thì trong phương trình này và các phương trình tiếp theo ở trước lực này cần phải đặt dấu trừ. k = η 2 , ta sẽ có phương trình ban đầu: Trong phương trình (9-11) nhận m p x " + η2x = 0 (9-12) m Nghiên cứu phương trình này với x có dạng: x = C1 cosηt + C2 sin ηt (9-13) Ta tìm các hằng số C1, C2 từ các điều kiện ban đầu: t = 0; x = x 0 ; x ' = x '0 = v 0 Trong đó: x0 : độ co hoàn toàn của lò xo tương ứng với vị trí ban đầu được xét của điểm qui đổi. x '0 = v 0 : tốc độ ban đầu đối với vị trí ban đầu của bộ phận cơ khí. Các hằng số này bằng: x' p0 v C1 = x 0 − ; C2 = 0 = 0 η η k Như vậy, nghiệm đủ của phương trình (9-12) đối với x có dạng: x '0 p sin ηt + x 0 cosηt + 0 (1 − cosηt ) x= (9-13') η k Nghiệm đối với tốc độ: ⎛ p⎞ x ' = x '0 cosηt − η⎜ x 0 − 0 ⎟ sin ηt (9-14) k⎠ ⎝ Nếu tốc độ ban đầu bằng không, thì phương trình về tốc độ (9-14) có dạng: ⎛p ⎞ x ' = −η⎜ 0 − x 0 ⎟ sin ηt (9-15) ⎝k ⎠ 209
  8. mqđ Dấu trừ trong phương trình KX ± p0 này biểu hiện chuyển động hướng về chiều âm trục x. Quãng đường đi của tiếp điểm x từ vị trí đóng ban đầu trong trường x h hợp của chúng ta có thể xem như hiệu số: x0 h = x0 − x pqđ Dựa vào đây, các nghiệm của phương trình (9-13), (9-14) và (9-15) có thể dẫn về dạng: pqđMax dh h=f(t) và: v = = f 1 (t ) . dt x0 x Tương ứng với: x' ⎛ p⎞ h(t ) = ⎜ x 0 − 0 ⎟(1 − cosηt ) − 0 cosηt Hình 9-9. Sơ đồ thay thế tính động lực học của bộ truyền η k⎠ ⎝ động cơ khí. (9-16) dh(t ) ⎛ p⎞ v (t ) = == η⎜ x 0 − 0 ⎟ sin ηt − x '0 cosηt (9-17) dt k⎠ ⎝ ' Trong trường hợp x 0 = v 0 = 0 , ta có: ⎛ p⎞ v(t ) = η⎜ x 0 − 0 ⎟ sin ηt (9-18) k⎠ ⎝ Như vậy, theo các phương trình trên có thể dựng các đặc tuyến: dh h = f (t ) và = v(t ) = f 1 (t ) dt Cho đường đi của điểm qui đổi (hay cho hành trình của bộ phận cơ khí) bị lực đàn hồi của lò xo tác động vào. Khi đó tốc độ cực đại có thể tính theo phương trình: ⎛p ⎞ x 'max = η⎜ 0 − x 0 ⎟ (9-19) ⎝k ⎠ Trên cơ sở phương trình này, nếu cho trước tốc độ cực đại ta tìm được độ cứng của lò xo k, còn biết trị số cực đại x0 ta cũng có thể tìm được lực cực đại của lò xo p1xmax. Điểm sau cho khả năng xác định kích thước kết cấu của lò xo. Giải phương trình (9-13') đối với thời gian t, ta sẽ nhận được: 210
  9. ⎡ ⎤ p x− 0 1⎢ ⎥ β k − arcsin t = ⎢arcsin (9-20) ⎥ η⎢ α 2 + β2 α 2 + β2 ⎥ ⎢ ⎥ ⎣ ⎦ x '0 p Trong đó: α = và β = x 0 − 0 η k ( ) ' Trong trường hợp tốc độ ban đầu bằng không x 0 = 0 phương trình có dạng: 1⎛ π⎞ xk − p0 ⎜ arcsin −⎟ t= (9-21) ⎜ pl max − p0 2 ⎟ η⎝ ⎠ Với plmax là lực cực đại của lò xo khi x=x0. Trong các phương trình này thay x=x0-h, ta sẽ được phương trình để tính thời gian chuyển động của điểm qui đổi t trên một số phần của hành trình h: ⎛ ⎞ p x0 − 0 − h ⎜ ⎟ β 1⎜ k ⎟ t= + arcsin arcsin (9-22) η⎜ α 2 + β2 ⎟ α 2 + β2 ⎜ n⎟ ⎝ ⎠ ' Khi x 0 = 0 : ⎛ ⎞ p x0 − 0 − h ⎜ π⎟ 1⎜ k −⎟ t= arcsin (9-23) p0 η⎜ 2⎟ x0 − ⎜ ⎟ ⎝ ⎠ k Trong các phương trình này, cũng như trong các phương trình đã nêu trên, x0 là độ co hoàn toàn của lò xo, tương ứng với lực cực đại của lò xo: pl max = kx 0 Trên cơ sở của các phương trình đã nêu ta tính được đặc tuyến chuyển động của điểm qui đổi cũng như cho trường hợp khi đặc tuyến chung về lực đàn hồi qui đổi của các lò xo (lò xo mở, lò xo gia tốc và lò xo tiếp điểm) có dạng bậc thang như miêu tả ở hình 9- 10. Trong trường hợp này tính đặc tuyến cần tiến hành theo phân đoạn liên tiếp, bắt đầu từ đoạn một. Rõ ràng, đối với mỗi đoạn như thế của đặc tuyến có thể tìm được thời gian chuyển động theo phương trình: ⎛ ⎞ p x 0n − 0n − h n ⎜ ⎟ βn kn 1⎜ ⎟ tn = + arcsin arcsin (9-24) ⎜ 2⎟ η α n + βn αn + βn ⎟ 2 2 2 ⎜ ⎝ ⎠ Trị số độ co ban đầu của lò xo: x0bđ đối với khoảng của đường đi h0n có thể tìm được theo đồ thị ở hình 9-9 hay theo công thức giải tích: 211
  10. pmlx x 0n = (9-25) kn Trong đó pmlx : lực kéo cực đại của lò xo tương ứng với điểm đầu của khoảng. kn : độ cứng của lò xo qui đổi tác động ở khoảng Rõ ràng, trong các giới hạn của mỗi khoảng thời gian có thể tính được các quan hệ h n = f (t n ) và v n = f 1 (t n ) theo các phương trình trên, trong đó các thông số phải tương ứng với khoảng đó. Tìm tốc độ ban đầu x '0 n = v 0n từ tính toán đặc tuyến của khoảng trước tn-1. Các phương trình dẫn trên đúng với đoạn đường x 0 = ∑ h n hoặc đối với khoảng thời gian t0 lực đàn hồi của các lò xo tác động. Sau khi các lò xo ngừng tác động, nhưng trước lúc xuất hiện lực hãm của bộ phận chống rung, chuyển động của hệ thống biểu thị bằng phương trình: dv m 2 = ± p02 (9-26) dt Trong đó: p02 là tĩnh lực tổng qui đổi tác động ở khoảng hai. Nghiệm của phương trình này đối với v2 và h2 có dạng: p v 2 = v 02 ± 02 t 2 (9-27) m v02 : tốc độ ban đầu đối với khoảng đó. p h 2 = v 02 t 2 ± 02 t 2 (9-28) 2 2m Thời gian chuyển động đối với đoạn đường này (h2) tính theo: mv 02 ⎛ ⎞ ⎜ 1 + 1 − 2p02h 2 ⎟ t2 = (9-29) p02 ⎜ mv 02 ⎟ 2 ⎝ ⎠ Sau khi bộ phận chống rung tác động, chuyển động của hệ thống trên một số phần còn lại của hành trình được xác định bằng trị số và bằng đặc tính về sự thay đổi của lực hãm. 212
  11. Kết cấu và các đặc tuyến bộ phận chống rung bằng dầu của các bộ phận plx1 truyền động cơ khí thường được chọn sao cho trong suốt 1 hành trình của pít tông lực plx2 2 hãm không đổi. ± p0 KqđXqđ mqđ Như đã thử ở trên, chuyển động chậm dần đều plx3 của hệ thống ở cuối hành 3 trình bảo đảm cho lực hãm không đổi. Nếu xuất phát từ 0 điều kiện này ta sẽ có những x phương trình để tính các đặc h x tuyến chuyển động của hệ x0 thống dưới tác động lực hãm không đổi của bộ phận chống plx1 rung và không có các lực đàn plx1max Đặc tuyến hồi của lò xo. Các phương của lò xo trình này tương tự như trước 0 1 x và có dạng: plx2 p v 3 = v 03 − 03 t 3 (9-30) plx2max Đặc tuyến m của lò xo 0 p h 3 = v 03t 3 − 03 t 2 (9-31) 2 x plx3 3 2m Đặc tuyến plx3max mv 03 ⎛ ⎞ của lò xo ⎜ 1 + 1 − 2p03 h 3 ⎟ t3 = 0 3 p03 ⎜ ⎟ x mv 03 2 ⎝ ⎠ (9-32) Đặc tuyến Trong đó: tổng các plx1 + plx2 v03 : tốc độ ban đầu lò xo p2max p +pl 3 của hệ thống: 3max p1max p03 = p02 + p hr 0 x01 phr : lực hãm của bộ x h01 phận chống rung. x02 h02 x03= h03 x0 Hình 9-10. Hệ thống thay thế khi các lực qui đổi của nhiều lò xo tác động. 213
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2