Nguyễn Công Phương

CONTROL SYSTEM DESIGN

Stability in the Frequency Domain

Contents

Introduction

I. II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII. The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems

sites.google.com/site/ncpdhbkhn

2

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

3

Ex. 1

Mapping Contours in the s – Plane (1)

jv

jw

s – plane

( )F s

D

2j

F(s) – plane A

2j

D

A

1j

1j

s

2-

1-

1

2

2-

1-

1

2

u

0 1j

0 1j

B

C

- -

B

2j

2j

C

+

1

+

=

+

w

=

- -

= + u

jv

F s

s= ( ) 2

1

s 2(

j

+ ) 1

s (2

+ + 1)

w 2j

s 2 w 2

=

=

s

+

w

+ + s (2 1)

w (2 )

j

· + + (2 1 1)

· = + (2 1) 3

j

2

=  u  = v j

j 1

= + FA u

j · + +

= jv = -

j 1

j

[2 ( 1)] 3

j

2

= + 1 = - 1 = -

= B =

(2 1 1) - + +

fi · -

sA B s C

j 1

1

j

2

- fi · · - -

1 = - + 1

F C F = D

j 1

[2 ( 1) 1] - + + [2 ( 1) 1]

= - j [2 ( 1)] · = - + j

1

j

2

s D s

F

(2 1) sites.google.com/site/ncpdhbkhn

4

fi ·

Ex. 2

Mapping Contours in the s – Plane (2)

=

F s ( )

s +

s

2

A

D

D

s-plane F(s)-plane 1.5 1.5

1 1

A

v

0.5 0.5

j

j

B

w 0 0

-0.5 -0.5

C

C

B

-1 -1

sites.google.com/site/ncpdhbkhn

5

-1.5 -1.5 -2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 0 0.5 1 1.5 s -0.5 u

Mapping Contours in the s – Plane (3)

s-plane F(s)-plane

+

2 2

F s

s= ( ) 2

1 1

v

1

j

j

w 0 0

-1 -1

-2 -2

0 -2 -1 -1 -2 1 2 3 0 1 2 3 s u

Cauchy’s theorem: If a contour Γs in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour ΓF in the F(s)-plane encircles the origin of the F(s)-plane N = Z – P times in the clockwise direction.

F(s)-plane s-plane 1.5 1.5

1 1

v

j

jw

0.5 0.5

0 0

=

F s ( )

s

-0.5

s -0.5 + 2 -1

-1

6

-1.5 -1.5 -2 -1 0 1 -1 0 1 s u -2 sites.google.com/site/ncpdhbkhn

Ex. 3

Mapping Contours in the s – Plane (4)

=

F s ( )

s + 0.5

s

F(s)-plane s-plane 0.15 6

0.1 4

v

2 0.05

j

j

w 0 0

-2 -0.05

-4 -0.1

If a contour Γs in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour ΓF in the F(s)-plane encircles the origin of the F(s)-plane N = Z – P times in the clockwise direction.

sites.google.com/site/ncpdhbkhn

7

-6 -6 -4 -2 0 2 4 6 0.9 0.95 1 1.1 1.15 s 1.05 u

Ex. 2

=

Mapping Contours in the s – Plane (5) =

f

=

F s ( )

= ( ) F s

F s ( )

F s ( )

f (

)

z

p

s +

+ +

s

2

s s

z p

If a contour Γs in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour ΓF in the F(s)-plane encircles the origin of the F(s)-plane N = Z – P times in the clockwise direction.

F(s)-plane

s-plane

1.5

1.5

1

1

f

f-

f

0.5

0.5

z

z

p

v

— — -

j

0

0

j

f

p

-0.5

-0.5

-1

-1

-1.5

-1.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

-2

-1.5

-1

0

0.5

1.5

1

1.5

w

-0.5 u

-2.5 sites.google.com/site/ncpdhbkhn

1 8

s

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

9

The Nyquist Criterion (1)

• F(s) = 1 + L(s) = 0

jw

s – plane

r fi

• A feedback system is stable if and only if the contour ΓL in the L(s) – plane does not encircle the (–1, 0) point when the number of poles of L(s) in the right – hand s – plane is zero (P = 0).

0

s

¥

s

Nyquist contour

(when the number of poles of L(s) in the right – hand s – plane is other than zero) A feedback system is stable if and only if, for the contour ΓL , the number of counterclockwise encirclements of the (–1, 0) point is equal to the number of poles of L(s) with positive real parts.

sites.google.com/site/ncpdhbkhn

10

G

The Nyquist Criterion (2)

Ex. 1

( )R s

( )Y s

t

1 + s

1 1st + 1

1 1st + 2

1 + s 1

2

=

( )-

T s ( )

+

1

K

t

1 1 + s

1

. t 1 1 + s 1

2

K

= ( ) L s

L s ( )

K

K

A feedback system is stable if and only if the contour ΓL in the L(s) – plane does not encircle fi + 1 the (–1, 0) point when the number of poles of L(s) in the right – hand s – plane is zero (P = 0).

t

t

1 + s

. t 1

1 + s

1

. t 1 1 = = + 0 1 + 1 s

1 + s

. t 1

1

2

1

2

=

w j

w

jv

jw

=

=

w L j (

)

0

s – plane

w

fi ¥

A

=

s

w fi

fi ¥

sA LA sB

r fi

=

=

s s (

)

0

L

s

¥ fi ¥ ¥

LB

D

,C

A

, B

D 0

B s

0

u

=

w j

fi ¥

sC

w =

1 t

1 t

0

1

2

=

=

0

)

w

fi - ¥ - -

fi - ¥

s

C

w w L j ( = + 0

j

=

0 =

L

(0)

K

L(s) – plane

LC sD LD

sites.google.com/site/ncpdhbkhn

11

G

The Nyquist Criterion (3)

Ex. 2

jw

s – plane

=

D

L s ( )

K st + (

s

1)

r fi

C

=

B

w j

sA

w

<

¥

w 0,

0

E s

0

e

1 t

A

=

w L j (

)

LA

w

<

-

w 0,

0

s

F

=

+

K j

w j

(

tw )(

1)

w

<

G

w 0,

0

= -

+ ¥ t K

j

t K 2

K 2

2

+

+

t w 2

j wt w

1

(

1)

 = -  

  

w

<

-

w 0,

0

Cauchy’s theorem: If a contour Γs in the s-plane encircles Z zeros and P poles of L(s) and does not pass through any poles or zeros of L(s) and the traversal is in the clockwise direction along the contour, the corresponding contour ΓF in the L(s)-plane encircles the origin of the L(s)-plane N = Z – P times in the clockwise direction. sites.google.com/site/ncpdhbkhn

12

K = 2, t = 1

The Nyquist Criterion (4)

Ex. 2

jw

A

20

s – plane

=

D

L s ( )

15

s

1)

10

r fi

C

= -

K st + ( + ¥ t K

j

LA

B

v

j

¥ 5

B

,D F

E s

0

0

e

=

s

1 t

s

sB

0

A

- -5 fi

s

K

F

=

=

s (

L

)

B L

s

0

C

+

s s (

1)

s

0

-10 G -15 fi fi -20

= ¥

=

= -

0 10 20 u

w j

w L j (

)

t K

j

sC

w

>

= C L

w

>

w 0,

0

w 0,

= 0

+

K j

w j

(

tw )(

1)

>

w

w 0,

0

=

=

=

fi - ¥ fi fi fi

w j

w L j (

)

0

sD

w

w

= D L

+

w j

(

tw )(

1)

w

=

=

=

fi fi ¥ fi ¥ fi ¥

w j

)

0

w L j (

sF

w

w

= F L

+

(

tw )(

1)

K j K j

w j

w

sites.google.com/site/ncpdhbkhn

13

fi fi - ¥ fi - ¥ fi - ¥

The Nyquist Criterion (5)

jv

jw

s – plane

A

=

L s ( )

+

+

K t 1)(

t (

s

1)

s

w fi

1

2

r fi

D

A, B,C

D 0

B s

0

u

¥ ¥

w =

0

1 t

1 t

1

2

- -

s

C

K = 2, t = 1

It is sufficient to construct the contour ΓL for the frequency range 0<ω<∞ in order to investigate the stability.

20

jw

A

s – plane

15

D

10

G

r fi

C

5

B

v

j

0

B

,D F

• The magnitude of L(s) as s = rejϕ and r →∞ will normally approach zero or a constant.

E s

0

¥

e

-5

1 t

A

-10

-

=

-15

s

F

L s ( )

C

1)

s

-20

K st + ( sites.google.com/site/ncpdhbkhn

14

0

10

20

u

G

jw

s – plane

D

The Nyquist Criterion (6)

r fi

¥

Ex. 3

C

B

=

L s ( )

E s

0

+

+

e

K t 1)(

t (

s

1)

s 1

2

1 t

A

=

w L j (

)

-

+

s

s K wt + 1)(

w wt j (

j

j

1)

F

1

2

2

G

K

t (

)

1 2

=

jK +

+ t 1 + 1

) 2 w t 2 (

w (1/ + wtt 2 ) 2

wtt )(1 4 2 2 2 1

t 2 1

- - -

=

p

[

wt 1 tan (

)

wt 1 tan (

)

/ 2]

1

2

2

2

w t 4

wtt 2

K +

+

- - — - - -

(

w 2 )

(1

)

t 1

2

1 2

=

p

-

C

w j

= )

(

/ 2)

s

= C L

w

>

w 0,

0

w

2

2

w lim ( L j w 0

lim 0

w t 4

wtt 2

K +

+

(

w 2 )

(1

)

t 1

2

1 2

K

=

fi — - fi fi fi -

w j

= )

lim

p ( 3 / 2)

D s

= D L

w

3

w lim ( L j w

w

ttw 1 2

sites.google.com/site/ncpdhbkhn

15

fi — - fi ¥ fi ¥ fi ¥

jw

s – plane

D

The Nyquist Criterion (7)

r fi

¥

Ex. 3

C

B

=

L s ( )

E s

0

+

+

e

K t 1)(

t (

s

1)

s

s 1

2

1 t

A

K

=

p

p

-

C

(

/ 2);

( 3 / 2)

L

= D L

K 0

s

F

2

— - — - G ¥

)

1 2

=

j

w L j (

)

+

w t 2

t ( +

wtt )(1 +

K = 1, t

= 5, t

= 5

(

1

K + t 1

w (1/ wtt 2 (

)

K t 2 1

+ t 2 1 + wtt 2 ) 2

w t 4 2 2 2 1

) 4 2 2 2 1

2 2

2 1

1

2

+ 6

2

- - -

1 2

w L j Im{ (

= fi )} 0

0

4

)(1 +

K (1/ + w t 2 (

1

w t 2 1

wtt + wtt 2 ) 2

) = 4 2 2 2 1

2

-

w =

L w Re( )

=

tt K 1 2 + t

t

= 1 tt 1 2

v

2

1

1 tt 1 2

j

0

-2

t

- fi fi

+ t 1

2

1

K

-4

tt K 1 2 + t

t

tt

2

1

1 2

-6

-6

-4

-2

0

2

4

sites.google.com/site/ncpdhbkhn

16

u

- fi ‡ - fi £

The Nyquist Criterion (8)

Ex. 3

t

2

=

K

L s ( )

+

+

K t 1)(

t (

s

1)

s

+ t 1 tt 1 2

s 1

2

K = 2, t

= 1, t

= 1

K = 3, t

= 1, t

= 1

K = 1, t

1

2

1

2

= 1, t 1

= 1 2

1.5

1.5

1.5

1

1

1

0.5

0.5

0.5

v

v

v

j

j

j

0

0

0

-0.5

-0.5

-0.5

-1

-1

-1

-1.5

-1.5

-1.5

-2

-1

0

1

-2

-2

-1

0

1

-1

0

1

u

u

u

sites.google.com/site/ncpdhbkhn

17

£

jw

s – plane

D

The Nyquist Criterion (9)

r fi

¥

Ex. 4

C

B

=

L s ( )

E s

0

2

+

e

K st (

s

1 t

A

-

=

=

w L j (

)

p [

wt 1 tan (

)]

2

4

2

6

w

+

w

K + t w

s

wt (

1)

1) K j

F

=

C

w j

s

w

>

- — - - G -

2

w 0,

0

1.5

= w L j )

p (

)

= C L

w

lim ( w 0

lim 0

K w 2

1

0.5

=

w j

D s

w

fi — - fi fi

v

j

0

K

p

fi ¥

w = L j )

lim

( 3 / 2)

= D L

3

lim ( w

w

-0.5

tw

-1

f j

=

e

e

B s

e

fi — - fi ¥ fi ¥

0

-1.5

f j

2

e L e

f = j )

e

= B L

-2 -2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

lim ( e 0

lim e 0

K e 2

u

sites.google.com/site/ncpdhbkhn

18

- fi fi fi

The Nyquist Criterion (10)

2.5

2

( )Y s

s – plane

Ex. 5 ( )R s

1.5

jw D

1K

1

1 s

1 1s -

( )-

0.5

r fi

C

v

j

0

B

-0.5

E s

0

e 1

-1

1K

=

A

L s ( )

-1.5

¥

K 1 s s (

1)

-2

-

s

F

-2.5

-3

-2

-1

0

u

G

Ex. 6

2

s – plane

( )Y s

( )R s

1.5

jw D

1K

1

1 s

1 1s -

( )-

r fi

C

( )-

0.5

2K

v

B

j

0

-0.5

E s

¥

0

e 1

1 K

2

-1

+

1)

A

=

L s ( )

-1.5

-

K K s ( 2 1 s s (

1)

-2

s

F

-5

-4

-3

-2

0

sites.google.com/site/ncpdhbkhn

-1 19

u

- G

The Nyquist Criterion (11)

2

s – plane

( )Y s

1.5

Ex. 6 ( )R s

jw D

1K

1

1 s

1 1s -

( )-

r fi

C

( )-

0.5

2K

v

B

j

0

-0.5

E s

¥

0

e 1

1 K

2

-1

+

1)

A

=

L s ( )

-1.5

-

( K K s 1 2 s s (

1)

-2

s

F

-5

-4

-3

-2

-1

0

u

2

2

+

- G

(

K

)

K

1) +

= w ) L j (

+ 2 2

2 2

w K 1 w

w

w K 1 j w

+ 4

w (1 + 4

w K K j ( 1 2 w w ( j j

- - fi -

w w K

2

w K 1

2 ) = fi

w =

w L j Im{ (

= fi )} 0

0

2 2

1) = 1) (1 4

w

w +

1 K

2

2

-

1)

=

= -

Re{ (

w L j

)}

2

K K 1

2

w

4

+ 2 2

= 1/

K

2

w K 1 w

( K + w

2

w

= 1/

K

2

= - + = fi

-

If

1

= 1

+ Z N P

1 1 0

stable

K K 1

< - 2

> fi K K 1 2

sites.google.com/site/ncpdhbkhn

20

- fi

The Nyquist Criterion (12)

2

s – plane

( )Y s

1.5

Ex. 6 ( )R s

jw D

1K

1

1 s

1 1s -

( )-

r fi

C

( )-

0.5

2K

v

B

j

0

-0.5

E s

¥

0

e 1

1 K

2

-1

A

K K >

1

-1.5

2

1

-

-2

s

F

-5

-4

-3

-2

-1

0

K

K

u K = 1, K = 0.5, K K 1 2 1

= 0.5 2

K = 3, K = 0.5, K 1 2 1

= 1.5 2

= 1 K = 2, K = 0.5, K 2 1 2 1

2

2

2

1

1

1

v

v

v

j

j

j

0

0

0

-1

-1

-1

-2

-2

-2

-4

-2

0

-4

0

-2

-4

-2

0

u

u

u

sites.google.com/site/ncpdhbkhn

21

G

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

22

Ex. 1

= 1; t 1

= 1 2

0.5

=

L s ( )

+

+

t

Relative Stability and the Nyquist Criterion (1) K t 1)(

1)

s

t (

s

s 1

=

w L j (

)

+

2 K t w + 1)(

wt w j (

j

j

1)

0

1

2

(

)

2

v

=

j

+

-

w t 4

t + 1 ttw 2

w t 2 K w + 2 )

(

2 2 )

2

t 1

1 2

2

-

w

Ktt 1 2 t+ t

-0.5

K

)

1

2

j

+

w t 4

(

(1 ttw (1 + w 2 )

1 2 ttw 2 (1

2 2 )

t 1

2

1 2

2

w

- - -

)

K

K = 2.5 K = 1.2 K = 0.3

w L j Im{ (

= fi )} 0

0

w t 4

+

-

ttw (1 w + 2 )

1 2 ttw 2 (1

(

= 2 2 )

t 1

2

1 2

-1 -1.5

-1

-0.5

0

u

w =

-

1 tt 1 2

tt

(

)

2

1 2

=

=

w L j Re{ (

)}

w

tt

= 1/

1 2

t + 1 ttw 2

w t 4

+

- -

w t 2 K w + 2 )

(1

(

2 2 )

t tt

w

2

t 1

1 2

K + 1

2

t = 1/

1 2

sites.google.com/site/ncpdhbkhn

23

-

Relative Stability and the Nyquist Criterion (2)

= 1; t 1

= 1 2

0.5

Phase difference before instability

0

a

v

j

d

=

=

Gain margin

20log

MG

-0.5

1 d

K = 2.5 K = 1.2 K = 0.3

a

Phase margin

= F = M

-1 -1.5

-1

-0.5

0

u Gain difference before instability

sites.google.com/site/ncpdhbkhn

24

t

Ex. 2

0.5

Relative Stability and the Nyquist Criterion (3) =

Given

L s ( )

+

+

6 + 2

2)(

2

s

2)

s s ( Find its gain & phase margin?

0

=

a

w L j (

)

Phase difference before instability

w

+

+

6 + 2

w j

(

w 2)(

2

j

2)

v

j

2

d

w

-

=

2

-

w

-0.5

16(1

24(1 + w 2 2 )

2 2 )

2

) w (6 w

- -

j

2

w

16(1

w 6 (6 w + 2 2 )

) w (6

2 2 )

2

w

- - - -

-1 -1.5

-1

-0.5

0

=

= w

L Im{ }

= fi 0

2.45 rad/s

2

w

-

2 2 )

16(1

w 6 (6 + w 2 2 )

) w (6

u Gain difference before instability

2

w

- -

=

=

=

d

0.3

L w Re{ }

=

2

2.45

-

w

24(1 + w 2 2 )

) w (6

16(1

2 2 )

=

w

2.45

=

=

=

=

Gain margin

20log

20log

10.46 dB

MG

1 d

1 0.3

sites.google.com/site/ncpdhbkhn

25

- -

Ex. 2

0.5

Relative Stability and the Nyquist Criterion (4) =

Given

L s ( )

+

6 + 2

+

2)

s

2

2)(

0

=

1

)

a

Phase difference before instability

2

2

w

v

j

2

d

w

24(1 + w 2 2 )

) w (6

16(1

2 2 )

s s ( Find its gain & phase margin? L jw (   

  

2

-0.5

2

- fi - -

w

w =

+

=

1.253 rad/s

1

2

w

16(1

w 6 (6 + w 2 2 )

) w (6

2 2 )

  

  

- fi - -

w L j (

)

atan

w

= = 1.253

Im{ } L L Re{ }

w

-1 -1.5

-1

-0.5

0

   

   

= 1.253

2

w

fi —

u Gain difference before instability

2

w

-

16(1

2 2 )

=

= -

atan

o 112.3

w

- -

2

w

-

16(1

w 6 (6 w + 2 2 ) 24(1 w + 2 2 )

) w (6 2 ) w (6

2 2 )

w

     

     

= 1.253

o

= F =

= -

a

- -

Phase margin

o 112.3

= o ( 180 )

67.7

M

sites.google.com/site/ncpdhbkhn

26

fi - -

Relative Stability and the Nyquist Criterion (5)

= 1; t 1

= 1 2

0.5

=

=

Gain margin

20log

MG

1 d

a

Phase difference before 0 instability

v

j

d

-0.5

The gain margin is the increase in the system gain when phase = –180° that will result in a marginally stable system with intersection of the –1 + j0 point on the Nyquist diagram.

K = 2.5 K = 1.2 K = 0.3

a

Phase margin

= F = M

-1 -1.5

-1

-0.5

0

u Gain difference before instability

The phase margin is the amount of phase shift of the L(jωt) at unity magnitude that will result in a marginally stable system with intersection of the – 1 + j0 point on the Nyquist diagram.

sites.google.com/site/ncpdhbkhn

27

t

Ex. 2

=

=

w

=

Gain margin

10.46 dB,

2.45 rad/s

MG

Relative Stability and the Nyquist Criterion (6) =

Given

L s ( )

+

+

6 + 2

2)(

2

s

2)

= w

Phase margin

o 67.7 ,

1.253 rad/s

= F = M

s s ( Find its gain & phase margin?

Bode Diagram

5

0

)

-5

MG

-10

B d ( e d u t i n g a M

-15

-20

1.5

2

2.5

3

3.5

4

1

-25 -45

-90

) g e d (

-135

M

e s a h P

-180

-225

1

1.5

2

2.5

3

3.5

4

Frequency (rad/s)

sites.google.com/site/ncpdhbkhn

28

F

Ex. 3

Relative Stability and the Nyquist Criterion (7)

=

=

Compare

.

L s ( ) 1

L s & ( ) 2

2

+

+

1 +

1 1)(0.2

1)

s

s s (

s s (

1)

Bode Diagram

10

0

2MG

)

1MG

-10

-20

B d ( e d u t i n g a M

-30

G>

G M

M

2

-40 -90

1 > F 1 M

M

2

L 1 L 2

-135

F

1M

-180

F

2M

) g e d ( e s a h P

-225

-270

0.5

0.6

0.7

0.8

0.9

1

2

3

4

Frequency (rad/s)

sites.google.com/site/ncpdhbkhn

29

F

Relative Stability and the Nyquist Criterion (8)

2

2

o

2 n

=

w

=

w L j (

)

+ z w 4

90

atan

2 n

w 2 n zw +

w w

w w j (

j

2

)

w zw 2

  

  

  

  

n

n

F = -

— - -

1

o90

atan

M

w zw 2

n

0.9

Exact Linear approximation

0.8

2

2 n

w

+

=

z w 4

1

2 c

2 n

0.7

w w

c

fi -

0.6

, o

i t a r

2

z

0.5

z + - 4 4

z 1 2

i

w w

2 = c 2 n

0.4

g n p m a D

0.3

2

F =

atan

M

0.2

4

z

4+1/

2

0.1

0

0

10

20

30

40

50

70

80

90

100

z

=

z

-

0.01

,

0.7

Phase margin, F

60 ( o ) M

M

sites.google.com/site/ncpdhbkhn

30

F £

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain

5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

31

Time – Domain Performance Criteria in the Frequency Domain (1)

( )R s

( )Y s

( )G s

cG s ( )

)

=

=

w T j (

)

( )-

)

w Y j ( w R j (

) )

)

(

)

j

=

( )H s

= + u

)

(

jv

w w G j G j ( ( ) c w w + ( 1 G j G j ( c M e f w w ( ) w w ( cG j G j )

1.5

)

M =

0.7

M =

1.5

1M =

M

w (

= )

1

w w G j G j ) ( ( c + w w ( G j G j (

)

1

)

c

0.5

2

2

+

=

=

0

2

2

2M =

M =

0.5

u +

v +

+ jv u + + u

jv

1

u

)

(1

v

-0.5

-1

2

2

2

M

2

-1.5

u

= v

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

+ 2

2

  

1

M

  - 1

M M

  

  

sites.google.com/site/ncpdhbkhn

32

fi - -

Time – Domain Performance Criteria in the Frequency Domain (2)

4.5

1

K

1

1M

K

2

2M

4

0.5

3.5

0

3

1M

2.5

v

j

-0.5

e d u t i n g a M

2

2M

-1

1.5

K>

K 1

2

1

-1.5

0.5

1K

2K

-2

0

-2.5

-2

-1.5

-1

-0.5

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

=

=

Polar plot of w L j ( )

)

(

w KP j (

)

=

w w ( cG j G j )

)

w T j (

Frequency response of w w G j G j ) ( ( ) c + w w ( G j G j (

1

)

c

) 33

sites.google.com/site/ncpdhbkhn

w

Time – Domain Performance Criteria in the Frequency Domain (3)

6

( )R s

( )Y s

f =

o10

( )G s

cG s ( )

( )-

4

f =

o20

( )H s

2

)

f w ( j

)

=

=

=

w

w T j (

)

M e ( )

f =

w Y j ( w R j (

) )

w w G j G j ( ( ) c + w w ( G j G j (

)

1

)

o30

c

1.5

0

M =

0.7

M =

1.5

1M =

f = -

1

o30

0.5

-2

0

2M =

M =

0.5

f = -

o20

-0.5

-4

-1

f = -

o10

-1.5

-6

-4

-3

-2

-1

0

1

2

3

-3

-2.5

-2

-1.5

-1

0

0.5

1

2

2.5

1.5

2

2

2

2

M

-0.5 2 +

= 2

+

2 =

u

v

u

v

+ 1

2

2

1 2

f

  

1

M

  - 1

M M

  

+ 1   2

1 f 2

1 4

  

  

  

  

  

   sites.google.com/site/ncpdhbkhn

34

- - -

Ex.

( )R s

( )Y s

( )G s

=

cG s ( )

= ( ) 1

H s

,

cG s G s ( ) ( )

Time – Domain Performance Criteria in the Frequency Domain (4) 0.47 + + 2 s

s s (

1)

( )-

( )H s

Nichols Chart

20

1 dB

15

3 dB

10

6 dB

)

5

i

0

-5

B d ( n a G p o o L - n e p O

-10

-15

-20

-270

-225

-180

-135

-90

Open-Loop Phase (deg)

sites.google.com/site/ncpdhbkhn

35

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

36

System Bandwidth (1)

Ex. 1

0

=

=

,

T s ( ) 1

T s ( ) 2

-3

T 1 T 2

1 +

s

1

1 + s

5

1

-6

B d

, |

-8

|

l

-10

T g o 0 2

-18

0

0.2

1

2

Step Response

1

0.8

0.6

e d u t i l

p m A

0.4

T 1

0.2

T 2

0

0

2

4

6

8

10

Time (seconds)

sites.google.com/site/ncpdhbkhn

37

w

System Bandwidth (2)

Ex. 2

=

=

,

T s ( ) 1

T s ( ) 2

2

2

+

+

100 + s 10

s

100

s

900

900 + s 30

10

Step Response

1.2

T 1 T 2

T 1 T 2

0 -3

1

-10

0.8

-20

B d , |

|

-30

e d u

t i l

0.6

l

T g o 0 2

p m A

-40

0.4

-50

0.2

-60

0

-70

0

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10

1 10

10

Time (seconds)

sites.google.com/site/ncpdhbkhn

38

w

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

39

The Stability of Control Systems with Time Delays (1) • Time delay: the time interval between the start of an even at one point in a system and its resulting action at another point in the system.

• A pure time delay, without attenuation:

Gd(s) = e–sT

• A pure time delay does not change the magnitude of the transfer function.

• The Nyquist criterion remains valid for a

system with a time delay.

sites.google.com/site/ncpdhbkhn

40

-

Ex.

+ s

1

sT

e

s

=

e

T s ( )

+

2

1

s

+

+

+

- » -

The Stability of Control Systems with Time Delays (2) 31.5 s 1)[( / 3)

+ / 3 1]

1)(30

s

s

(

s

T 2 T 2

6

4

B d

2

, |

|

0

l

-2

T 0 1 g o 0 2

-4

-0.2

-0.1

0.1

-0.3

10

10

0 10

10

-6 10

-100

With time delay Without time delay

-150

)

o

(

w

-180

without time delay

-200

F f

with time delay

-0.2

-0.1

0.1

10

10

0 10

10

-250 -0.3 10

F

sites.google.com/site/ncpdhbkhn

41

w

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

42

Ex.

PID Controllers in the Frequency Domain (1) dT s ( )

w

K

( )Y s

( )R s

2 n

g

I

+

+

K

P

K s D

2

+

+

+

K s

t (

s

1)(

s

zw 2

w s

)

n

2 n

g

g

( )-

( )H s

2

(

=

w

L s ( )

K

K

2 n

D

2

g

D +

w

+ t (

/ I + s

s s

) )

s

n

g

o

z =

K = –7000, τ = 5s. Design the PID controller so that GM ≥ 6dB, 30o ≤ ΦM ≤ 60o, rise time Tr < 4s, time to peak TP < 10s. + ( ) / K K s K K P D + zw 2 s 1)( 2 n g = 0.01 30

0.3 +

·

0.6

2.16 0.3 0.6

=

=

< fi 4

0.31

> w n

T r

F = 0.01 M + z 2.16 w

w

n

n +

p

p

·

w

=

0.4

3s,

8s

n

= T r

= T P

= 2

· fi

z

w

2.16 0.3 0.6 = 0.4

1

= 2 0.4 1 0.3

n

43

sites.google.com/site/ncpdhbkhn

- -

PID Controllers in the Frequency Domain (2)

2

Ex. K = –7000, τ = 5s. Design the PID controller so that GM ≥ 6dB, 30o ≤ ΦM ≤ 60o, rise time Tr < 4s, time to peak TP < 10s. + (

=

w

z

=

=

L s ( )

K

K

,

w 0.3,

0.4

2 n

D

n

2

g

w

/ +

D +

+ t (

s

s s

I s

) )

( ) / K K s K K P D zw + 2 s 2 1)( n

n g

g

Bode Diagram

20

10

)

0

B d (

MG

-10

e d u

t i

-20

n g a M

-30

-40 -45

-90

-135

) g e d ( e s a h P

-180

M

-225

-1

10

0 10

1 10

Frequency (rad/s)

sites.google.com/site/ncpdhbkhn

44

F

Stability in the Frequency Domain

1. Mapping Contours in the s – Plane 2. The Nyquist Criterion 3. Relative Stability and the Nyquist Criterion 4. Time – Domain Performance Criteria in the

Frequency Domain 5. System Bandwidth 6. The Stability of Control Systems with Time

Delays

7. PID Controllers in the Frequency Domain 8. Stability in the Frequency Domain Using

Control Design Software

sites.google.com/site/ncpdhbkhn

45

Stability in the Frequency Domain Using Control Design Software

• nyquist • nichols • margin • pade • ngrid

sites.google.com/site/ncpdhbkhn

46