’<br />
Tap ch´ Tin hoc v` Diˆu khiˆ n hoc, T.23, S.2 (2007), 121—<br />
ı<br />
e<br />
e<br />
.<br />
. a `<br />
.<br />
<br />
’. ˆ<br />
ˆ<br />
`<br />
`<br />
ˆ<br />
MO RONG PHU THUOC HAM VA PHU THUOC DA TRI<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
`<br />
ˆ<br />
ˆ<br />
`<br />
HO THU` N1 , HOANG THI LAN GIAO2<br />
A<br />
.<br />
1 Viˆn<br />
e<br />
<br />
.<br />
<br />
Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br />
o<br />
e o<br />
e<br />
e e<br />
.<br />
.<br />
. a o<br />
.<br />
.<br />
2 Khoa Cˆng Nghˆ Thˆng Tin, Dai hoc Khoa hoc Huˆ<br />
´<br />
o<br />
e<br />
o<br />
e<br />
.<br />
. .<br />
.<br />
<br />
Abstract. The aim of the paper is to give a generalization of functional and multivalued dependencies<br />
in an information system. The definitions are established under the assumption that there are some<br />
similarity relations between values of attributes. By using the so-called generalized dependency<br />
matrices we develop a necessary and sufficient condition for an extension dependency to be hold.<br />
Besides, some computational examples are given for illustration too.<br />
´<br />
`<br />
a .<br />
e<br />
o a<br />
a<br />
o<br />
T´m t˘t. B`i b´o d˜ xˆy du.ng c´c dinh ngh˜ mo. rˆng vˆ phu thuˆc h`m v` phu thuˆc da tritrong<br />
o<br />
a<br />
a a a a<br />
ıa ’ o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.i n`y du.o.c thiˆt lˆp trˆn co. so. th`.a nhˆn viˆc tˆ n tai c´c<br />
`<br />
´ .<br />
´<br />
’ u<br />
ıa o<br />
e a<br />
e<br />
a<br />
e o . a<br />
hˆ thˆng thˆng tin. C´c dinh ngh˜ m´ a<br />
e o<br />
o<br />
a .<br />
.<br />
.<br />
.<br />
.<br />
`<br />
’ .<br />
a . ’<br />
u<br />
o ınh. B˘ ng c´ch su.dung c´c ma trˆn phu thuˆc<br />
a<br />
a<br />
a<br />
a<br />
o<br />
quan hˆ tu.o.ng tu. gi˜.a c´c gi´ tri cua nh˜.ng thuˆc t´<br />
e<br />
. u a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. rˆng ch´ng tˆi da ra du.o.c mˆt diˆu kiˆn cˆn v` dudˆ mˆt phu thuˆc mo. rˆng thoa m˜n. Mˆt<br />
’ o<br />
’ o<br />
’ a<br />
’ .<br />
u<br />
o<br />
e<br />
e `<br />
o<br />
o `<br />
o<br />
mo o<br />
. a a ’ e .<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
ınh a<br />
a a<br />
sˆ v´ du minh hoa c˜ ng du.o.c tr` b`y trong b`i b´o.<br />
o ı .<br />
u<br />
.<br />
.<br />
<br />
’. A<br />
ˆ<br />
1. MO D` U<br />
´<br />
Cho A = (U, A) l` mˆt hˆ thˆng thˆng tin v´.i U l` tˆp c´c dˆi tu.o.ng v` A l`tˆp c´c<br />
a<br />
a o e o<br />
o<br />
o<br />
a a a o<br />
aa a<br />
.<br />
. . ´<br />
.<br />
.<br />
.i mˆi u ∈ U v` a ∈ A ta k´ hiˆu u(a) l` gi´ tri thuˆc t´ a cua dˆi tu.o.ng u.<br />
˜<br />
´<br />
’ o<br />
a<br />
y e<br />
a a .<br />
o ınh<br />
thuˆc t´nh. V´ o<br />
o ı<br />
o<br />
.<br />
.<br />
.<br />
.<br />
` a<br />
´<br />
Nˆu X ⊆ A l` mˆt tˆp c´c thuˆc t´ ta k´ hiˆu u(X) l` bˆ gˆ m c´c gi´ tri u(a) v´.i a ∈ X .<br />
e<br />
a o a a<br />
o ınh<br />
y e<br />
a o o<br />
a .<br />
o<br />
. .<br />
.<br />
.<br />
.<br />
´<br />
´<br />
´<br />
o<br />
a a<br />
o<br />
e o<br />
e<br />
o<br />
V` vˆy, nˆu u v` v l` hai dˆi tu.o.ng thuˆc U , ta s˜ n´i u(X) = v(X) nˆu u(a) = v(a) v´.i moi<br />
ı a<br />
e<br />
.<br />
.<br />
.<br />
.<br />
thuˆc t´ a ∈ X .<br />
o ınh<br />
.<br />
´<br />
´<br />
o a<br />
a<br />
a a a<br />
o ınh, th` Y du.o.c goi l` phu thuˆc h`m v`o X<br />
ı<br />
Nh˘ c lai r˘ ng, nˆu X, Y l` c´c tˆp thuˆc t´<br />
a . `<br />
a<br />
e<br />
.<br />
. a<br />
.<br />
.<br />
.<br />
.<br />
´<br />
trˆn U v` k´ hiˆu X → Y nˆu<br />
e<br />
a y e<br />
e<br />
.<br />
∀u, v ∈ U : u(X) = v(X) ⇒ u(Y ) = v(Y ).<br />
<br />
(1)<br />
<br />
`<br />
u<br />
a<br />
a<br />
Ho.n n˜.a, b˘ ng c´ch d˘t Z = A \ (X ∪ Y ), ta n´i Y l` phu thuˆc da tri v`o X trˆn U v`<br />
a<br />
o<br />
a<br />
o<br />
e<br />
a<br />
.<br />
.<br />
.<br />
. a<br />
´<br />
e<br />
k´ hiˆu X →→ Y nˆu<br />
y e<br />
.<br />
<br />
t(X) = u(X),<br />
<br />
(2)<br />
∀u, v ∈ U : u(X) = v(X) ⇒ ∃t ∈ U : t(Y ) = u(Y ),<br />
<br />
<br />
t(Z) = v(Z).<br />
<br />
’<br />
´<br />
o a<br />
a .<br />
o<br />
Tuy nhiˆn, trong thu.c tˆ, c´ nh˜.ng phu thuˆc h`m v` phu thuˆc da tri m` c´c d˘ ng th´.c<br />
e<br />
u<br />
. e o u<br />
.<br />
.<br />
.<br />
. a a a<br />
.c su. nghiˆm ng˘t nh vˆy. Ch˘ng han, cho bang d˜. liˆu<br />
’<br />
’<br />
e<br />
a<br />
a<br />
a<br />
u e<br />
a<br />
o<br />
o ’<br />
trong (1) v` (2) khˆng d`i hoi thu .<br />
.<br />
.<br />
.<br />
.<br />
.<br />
˜ a<br />
´<br />
o ınh o<br />
o<br />
a .<br />
e<br />
e o<br />
e ´<br />
o ınh<br />
sinh viˆn, d`o tao theo niˆn chˆ, v´.i ba thuˆc t´ l´.p, hotˆn, mˆn hoc. Dˆ thˆy thuˆc t´<br />
e<br />
.<br />
. e<br />
.<br />
.<br />
ho tˆn l` phu thuˆc da tri v`o thuˆc t´ l´.p, ngh˜ l` moi sinh viˆn trong c`ng mˆt l´.p s˜<br />
o<br />
o ınh o<br />
ıa a .<br />
e<br />
u<br />
o o e<br />
.<br />
.<br />
. a<br />
.<br />
.<br />
. e a<br />
<br />
122<br />
<br />
`<br />
ˆ<br />
ˆ<br />
`<br />
HO THU` N, HOANG THI LAN GIAO<br />
A<br />
.<br />
<br />
´<br />
`<br />
’ . a<br />
a<br />
o<br />
a o<br />
phai hoc c´c mˆn nh nhau. Bˆy gi`., nˆu nh` tru.`.ng da ra mˆt sˆ hoc phˆn tu. chon, v` v´.i<br />
o<br />
a<br />
o e<br />
o o .<br />
a .<br />
.<br />
. ´<br />
.p c´ thˆ hoc c´c mˆn kh´c nhau (nhng du.o.c<br />
’<br />
˜<br />
`<br />
o<br />
a<br />
mˆi hoc phˆn nh vˆy c´c sinh viˆn trong mˆt l´ o e . a<br />
o .<br />
a<br />
a a<br />
e<br />
o o<br />
.<br />
.<br />
.<br />
’<br />
˜<br />
ı u<br />
a o y<br />
e o `<br />
a<br />
o ınh . e<br />
o<br />
xem l` Tu.o.ng du.o.ng), th` ch´ng ta vˆn c´ l´ do dˆ n´i r˘ ng thuˆc t´ ho tˆn phu thuˆc da<br />
a<br />
.<br />
.<br />
.<br />
`<br />
oa<br />
a<br />
a u u a<br />
e<br />
e<br />
o<br />
o u<br />
u<br />
tri v`o thuˆc t´ l´.p, m˘c d` l´c n`y diˆu kiˆn (2) khˆng c`n d´ng n˜.a. R˜r`ng l` trong<br />
o ınh o<br />
.<br />
.<br />
. a<br />
.<br />
.`.ng ho.p n`y c´c dinh ngh˜a nh trˆn khˆng c`n ph` ho.p. M˘t kh´c, trong thu.c tˆ khˆng<br />
´<br />
a a .<br />
a<br />
a<br />
ı<br />
e<br />
o<br />
o<br />
u .<br />
tru o<br />
.<br />
.<br />
. e o<br />
´<br />
´<br />
´<br />
`<br />
´<br />
u e<br />
a<br />
o<br />
o<br />
ınh a<br />
o o<br />
e a<br />
a<br />
a<br />
hiˆm khi nh˜.ng d˜. liˆu thu nhˆn du.o.c khˆng c`n ch´ x´c nh vˆn c´. Diˆu n`y ch˘c ch˘ n<br />
e<br />
u<br />
.<br />
.<br />
.<br />
. co. so. d˜. liˆu.<br />
´<br />
’ u e<br />
c˜ng l`m cho ch´ng ta khˆng ph´t hiˆn hˆt moi phu thuˆc t`<br />
u<br />
a<br />
u<br />
o<br />
a<br />
e e<br />
o u<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
`<br />
a a<br />
u<br />
o e<br />
Dˆ g´p phˆn ph´t hiˆn c´c phu thuˆc tiˆm ˆ n trong d˜. liˆu, trong b`i n`y ch´ng tˆi s˜<br />
e o<br />
a<br />
a<br />
e a<br />
o ` a<br />
e ’<br />
u e<br />
.<br />
.<br />
.<br />
.<br />
. rˆng cua c´c kh´i niˆm phu thuˆc h`m v` phu thuˆc da<br />
´ .<br />
´ ´<br />
’ .<br />
’ a<br />
a e<br />
o a<br />
a<br />
o<br />
o a<br />
e a<br />
cˆg˘ng da ra mˆt c´ch tiˆp cˆn mo o<br />
o a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´ a<br />
’. rˆng n`y du.o.c thiˆt lˆp du.a trˆn mˆt h`m d´nh gi´ dˆ Tu.o.ng tu. gi˜.a<br />
a<br />
e .<br />
e<br />
o a<br />
a<br />
a o<br />
tri. C´c kh´i niˆm mo o<br />
a e<br />
.<br />
.<br />
.<br />
.<br />
. u<br />
.<br />
. a<br />
.<br />
´<br />
´<br />
’<br />
a . . e<br />
o<br />
u o a<br />
c´c gi´ tri trong bang d˜. liˆu. Khi su. Tu.o.ng tu. gi˜.a hai gi´ tri dat dˆn mˆt m´.c dˆ nhˆ t<br />
a<br />
a .<br />
u e<br />
.<br />
.<br />
. u<br />
.<br />
.<br />
’ xem hai gi´ tri n`y l` “dˆ ng nhˆ t”. V´.i c´ch tiˆp cˆn n`y, c´c phu<br />
`<br />
´<br />
´ a a<br />
dinh, ch´ng ta c´ thˆ<br />
u<br />
o e<br />
a . a a o<br />
a<br />
o a<br />
e .<br />
a<br />
.<br />
.<br />
’ ’<br />
´<br />
´<br />
o<br />
o a ’ a o<br />
a<br />
o a ’ e e<br />
thuˆc thu.c ra l` phu thuˆc xˆ p xı. Dˆ kiˆ m ch´.ng mˆt phu thuˆc xˆ p xı n`o d´, ch´ng tˆi<br />
o<br />
u<br />
u<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
o<br />
a<br />
a<br />
o<br />
c˜ng s˜ su. dung mˆt ma trˆn Tu.o.ng tu. ma trˆn phu thuˆc du.o.c su. dung trong [?].<br />
u<br />
e ’ .<br />
.<br />
.<br />
.<br />
. ’ .<br />
.<br />
.<br />
.<br />
´<br />
´<br />
ˆ<br />
2. CAC KHAI NIEM<br />
.<br />
˜<br />
`<br />
o<br />
a<br />
e<br />
a . ’<br />
o<br />
Cho hˆ thˆng thˆng tin A = (U, A). V´.i mˆ i V ⊆ U v` X ⊆ A, ta goi miˆn gi´ tri cua<br />
e o<br />
o<br />
.<br />
. ´<br />
.p<br />
V trˆn X l` tˆp ho<br />
e<br />
a a<br />
.<br />
.<br />
dom(V, X) := {u(X) | u ∈ V }.<br />
´<br />
´<br />
´ o<br />
’ e<br />
u<br />
e<br />
Khi V = U ta viˆt dom(X) thay cho dom(U, X) v` ho.n n˜.a, nˆu X = {a}, ta chıviˆt mˆt<br />
e<br />
a<br />
.<br />
.n gian: V = dom({a}).<br />
’<br />
c´ch do<br />
a<br />
a<br />
’<br />
a<br />
a e<br />
o<br />
e a a<br />
a .<br />
Dˆ mo. rˆng c´c kh´i niˆm phu thuˆc, trˆn c´c tˆp gi´ tri Va , ngo`i quan hˆ b˘ ng nhau<br />
e ’ o<br />
a<br />
e `<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. a<br />
.ng ta gia dinh l` tˆ n tai mˆt h`m Tu.o.ng tu., phan ´nh dˆ gˆn nhau gi˜.a c´c gi´<br />
`<br />
’ .<br />
’ a<br />
a<br />
a o .<br />
o a<br />
o `<br />
a<br />
u a<br />
thˆng th`<br />
o<br />
o<br />
.<br />
.<br />
.<br />
.o.c goi l` h`m tu.o.ng tu. trˆn tˆp<br />
tri. Mˆt c´ch ch´ x´c, mˆt ´nh xa s : Va × Va → [0, 1] du .<br />
o a<br />
ınh a<br />
o a<br />
. a a<br />
. e a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
`<br />
’<br />
Va nˆu hai diˆu kiˆn sau thoa m˜n:<br />
e<br />
e<br />
e<br />
a<br />
.<br />
o<br />
1. s(a1 , a2 ) = s(a2 , a1 ), v´.i moi a1 , a2 ∈ Va ,<br />
.<br />
2. s(a1 , a2 ) = 1 ⇔ a1 = a2 .<br />
a .<br />
s(a1 , a2 ) du.o.c goi l` m´.c tu.o.ng tu. gi˜.a hai gi´ tri a1 v` a2 . Cho α ∈ [0, 1], hai gi´ tri a1 v`<br />
a<br />
a .<br />
a<br />
. . a u<br />
. u<br />
.o.c goi l` α−tu.o.ng tu., v` k´ hiˆu a1 =α a2 , nˆu s(a1 , a2 ) α. R˜ r`ng khi h`m s chı<br />
´<br />
’<br />
a2 du .<br />
e<br />
o a<br />
a<br />
. a<br />
. a y e<br />
.<br />
a<br />
ı, o<br />
a ’<br />
nhˆn hai gi´ tri 0 v` 1, th` v´.i moi α > 0, a1 =α a2 khi v` chı khi a1 = a2 .<br />
a<br />
a .<br />
.<br />
.<br />
’<br />
a<br />
o<br />
a<br />
o e<br />
Cho tˆp thuˆc t´ B = {b1 , b2 , · · · , bm } ⊆ A v` β, γ ∈ dom(B). Khi d´ β v` γ c´ thˆ<br />
a<br />
o ınh<br />
.<br />
.<br />
.i βi , γi ∈ dom(bi ), 1 i m. Dˆ tu.o.ng tu. gi˜.a β v` γ du.o.c<br />
a<br />
o<br />
o<br />
a<br />
xem l` hai d˜y (βi )i v`(γi )i , v´<br />
a<br />
a<br />
.<br />
. u<br />
.<br />
dinh ngh˜ l` gi´ tri:<br />
ıa a a .<br />
.<br />
S(β, γ) = min{s(βi , γi ) | 1<br />
<br />
i<br />
<br />
m}.<br />
<br />
(3)<br />
<br />
’ ’<br />
Bˆy gi`., gia su. γ ∈ dom(B) v` D ⊆ dom(B), ta goi dˆ thuˆc cua γ v`o D l` dˆ tu.o.ng<br />
a<br />
o<br />
a<br />
o ’<br />
a<br />
a o<br />
. o<br />
.<br />
.<br />
.<br />
. l´.n nhˆ t gi˜.a γ v´.i c´c gi´ tri trong D . Cuthˆ, gi´ tri n`y du.o.c x´c dinh bo.i:<br />
’ a . a<br />
´<br />
’<br />
a u<br />
a .<br />
o a<br />
tu o<br />
.<br />
. a .<br />
. e<br />
b(γ, D) = max S(γ, β).<br />
β∈D<br />
<br />
´<br />
´<br />
e<br />
e . u<br />
y e<br />
Mˆt c´ch tu. nhiˆn, ta tiˆp tuc d`ng k´ hiˆu β =α γ nˆu S(β, γ) α v` n´i r˘ ng β v`<br />
o a<br />
e<br />
a o `<br />
a<br />
a<br />
.<br />
.<br />
.<br />
.o.ng tu.. C˜ng vˆy, ta n´i γ thuˆc v`o tˆp D v´.i m´.c α, v` k´ hiˆu γ ∈α D , nˆu<br />
´<br />
γ l` α−tu<br />
a<br />
o a a<br />
o<br />
a y e<br />
e<br />
u<br />
a<br />
o<br />
u<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
’. ˆ<br />
ˆ<br />
`<br />
`<br />
ˆ<br />
MO RONG PHU THUOC HAM VA PHU THUOC DA TRI<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
123<br />
<br />
`<br />
´<br />
’<br />
’ a<br />
b(γ, D) α. Mˆnh dˆ du.´.i dˆy cho ta mˆt sˆ t´ chˆ t co. ban cua c´c kh´i niˆm n`y m`viˆc<br />
a e<br />
a<br />
a e<br />
e<br />
e o a<br />
o o ınh a<br />
.<br />
.<br />
.<br />
. ´<br />
.ng minh c´ thˆ suy ra tru.c tiˆp t`. dinh ngh˜<br />
’<br />
´<br />
o e<br />
e u .<br />
ıa.<br />
ch´<br />
u<br />
.<br />
`<br />
e<br />
o<br />
Mˆnh dˆ 2.1. Cho B ⊆ A, D ⊆ dom(B), β, γ ∈ dom(B), ta c´<br />
e<br />
.<br />
1. S(β, γ) = S(γ, β); S(β, γ) = 1 ⇔ β = γ .<br />
2. 0<br />
<br />
b(γ, D)<br />
<br />
1; b(γ, D) = 1 ⇔ γ ∈ D .<br />
<br />
´<br />
ı<br />
3. Nˆu D ⊆ D ⊆ dom(B), th` b(γ, D)<br />
e<br />
<br />
b(γ, D ).<br />
<br />
4. γ ∈α D ⇔ ∃β ∈ D, γ =α β.<br />
o ınh: a (tˆn lˆp tr`nh viˆn), b (tr` dˆ chuyˆn mˆn),<br />
V´ du 2.1. X´t hˆ thˆng v´.i ba thuˆc t´<br />
ı .<br />
e e o<br />
o<br />
e a<br />
ı<br />
e<br />
ınh o<br />
e<br />
o<br />
.<br />
. ´<br />
.<br />
.<br />
. lˆp tr` su. dung) du.o.c cho trong Bang 1.<br />
’<br />
ınh ’ .<br />
c (ngˆn ng˜ a<br />
o<br />
u .<br />
.<br />
’<br />
Ba ng 1<br />
a<br />
A<br />
A<br />
A<br />
A<br />
A<br />
A<br />
A<br />
A<br />
B<br />
B<br />
<br />
b<br />
Bc<br />
Bc<br />
Bc<br />
Dip<br />
Dip<br />
Dip<br />
Ms<br />
Ms<br />
Bc<br />
Bc<br />
<br />
c<br />
PASCAL<br />
FORTRAN<br />
COBOL<br />
PASCAL<br />
C<br />
FORTRAN<br />
COBOL<br />
PASCAL<br />
C<br />
PASCAL<br />
<br />
’ a ’<br />
’ ’ a<br />
u<br />
a .<br />
u<br />
o ınh<br />
Gia su. h`m tu.o.ng tu. gi˜.a nh˜.ng gi´ tri trong t`.ng thuˆc t´ du.o.c cho bo.i c´c bang sau<br />
. u<br />
.<br />
.<br />
’<br />
Bang 2. H`m tu.o.ng tu. trˆn Vb<br />
a<br />
. e<br />
b<br />
Bc Dip Ms<br />
Bc<br />
1<br />
0.6 0.8<br />
Dip 0.6<br />
1<br />
0.3<br />
Ms 0.8 0.3<br />
1<br />
’<br />
Ba ng 3. H`m tu.o.ng tu. trˆn Vc<br />
a<br />
. e<br />
c<br />
FORTRAN COBOL PASCAL<br />
FORTRAN<br />
1<br />
0.9<br />
0.7<br />
COBOL<br />
0.9<br />
1<br />
0.7<br />
PASCAL<br />
0.7<br />
0.7<br />
1<br />
C<br />
0.8<br />
0.6<br />
0.6<br />
<br />
C<br />
0.8<br />
0.6<br />
0.8<br />
1<br />
<br />
D˘t B = {b, c}, β = (Bc, F OT RAN ), γ = (M s, COBOL) ∈ dom(B), ta c´<br />
a<br />
o<br />
.<br />
S(β, γ) = min{s(Bc, M s), s(F ORT RAN, COBOL)} = min{0.8, 0.9} = 0.8.<br />
<br />
`<br />
ˆ<br />
ˆ<br />
`<br />
HO THU` N, HOANG THI LAN GIAO<br />
A<br />
.<br />
<br />
124<br />
<br />
M˘t kh´c, v´.i D = {Bc, Dip} ⊆ dom(b) v` M s ∈ dom(b), ta c´<br />
a<br />
a<br />
o<br />
a<br />
o<br />
.<br />
b(M s, D) = max{s(M s, Bc), s(M s, Dip)} = max{0.8, 0.3} = 0.8.<br />
<br />
a<br />
Nhu. vˆy, β =0.8 γ v` M s ∈0.8 D.<br />
a<br />
.<br />
’. ˆ<br />
´<br />
` ´<br />
ˆ<br />
ˆ<br />
INH CHAT<br />
3. PHU THUOC MO RONG VA CAC T´<br />
.<br />
.<br />
.<br />
Du.a trˆn quan hˆ α−tu.o.ng tu. trˆn c´c tˆp gi´ tri, ch´ng ta s˜ da ra c´c kh´i niˆm phu<br />
e<br />
e<br />
a .<br />
u<br />
e<br />
a<br />
a e<br />
.<br />
.<br />
. e a a<br />
.<br />
.<br />
.<br />
. rˆng. Mˆt c´ch ch´ x´c, ch´ ng ta c´ c´c dinh ngh˜ sau.<br />
o a<br />
ınh a<br />
u<br />
o a .<br />
ıa<br />
thuˆc h`m v` phu thuˆc da tri mo o<br />
o a<br />
a .<br />
o<br />
.<br />
. ’ .<br />
.<br />
.<br />
Dinh ngh˜ 3.1. Cho X, Y ⊆ A v` α ∈ [0, 1]. Ta n´i Y α−phu thuˆc h`m v`o X trˆn U v`<br />
ıa<br />
a<br />
o<br />
o a<br />
a<br />
e<br />
a<br />
.<br />
.<br />
.<br />
´<br />
e<br />
k´ hiˆu X →α Y nˆu<br />
y e<br />
.<br />
∀u, v ∈ U : u(X) = v(X) ⇒ u(Y ) =α v(Y ).<br />
<br />
’<br />
Khi α = 1 ta nhˆn du.o.c dinh ngh˜ phu thuˆc h`m nguyˆn thuy.<br />
a<br />
ıa<br />
o a<br />
e<br />
. .<br />
.<br />
.<br />
.<br />
Dinh ngh˜ 3.2. Cho X, Y ⊆ A v` α ∈ [0, 1]. D˘t Z = A \ (X ∪ Y ). Ta n´i Y l` α−phu<br />
ıa<br />
a<br />
a<br />
o<br />
a<br />
.<br />
.<br />
.<br />
´<br />
´<br />
a<br />
e<br />
a y e<br />
e o<br />
thuˆc da tri v`o X trˆn U , v` k´ hiˆu X →→α Y , nˆu v´.i moi c˘p dˆi tu.o.ng u, v ∈ U sao<br />
o<br />
a o<br />
.<br />
.<br />
.<br />
. .<br />
.<br />
`<br />
`<br />
´<br />
’<br />
cho u(X) = v(X) = x, tˆ n tai dˆi tu.o.ng t ∈ U sao cho t(X) = x, dˆ ng th`.i thoa m˜n mˆt<br />
a<br />
o<br />
o . o<br />
o<br />
o<br />
.<br />
.<br />
`<br />
e<br />
e<br />
trong hai diˆu kiˆn sau:<br />
.<br />
1. t(Y ) = u(Y ) v` t(Z) =α v(Z),<br />
a<br />
a<br />
2. t(Y ) =α u(Y ) v` t(Z) = v(Z).<br />
`<br />
R˜ r`ng, khi α = 1 hai diˆu kiˆn trˆn tu.o.ng du.o.ng v` c˜ng tu.o.ng du.o.ng v´.i (2), nˆn ta<br />
o a<br />
a u<br />
o<br />
e<br />
e<br />
e<br />
e<br />
.<br />
’<br />
a e<br />
o<br />
e<br />
e<br />
u a .<br />
ıa ’ o<br />
c˜ng nhˆn du.o.c kh´i niˆm phu thuˆc da tri nguyˆn thuy. T`. c´c dinh ngh˜ mo. rˆng trˆn<br />
u<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
˜ kiˆm tra du.o.c r˘ ng, nˆu 0 β<br />
`<br />
´<br />
α<br />
1, th` X →α Y (X →→α Y ) k´o theo X →β Y<br />
ı<br />
e<br />
dˆ e<br />
e<br />
e<br />
. a<br />
˜<br />
´<br />
´<br />
(X →→β Y ). Ngo`i ra, mˆt sˆ t´ chˆt cua phu thuˆc h`m v` phu thuˆc da tri vˆn c`n<br />
a<br />
o o ınh a ’<br />
o a<br />
a<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. a o<br />
.i c´c phu thuˆc mo. rˆng. Diˆu d´ du.o.c kh˘ng dinh trong mˆnh dˆ du.´.i dˆy<br />
’<br />
´<br />
`<br />
`<br />
’ o<br />
o<br />
a<br />
d´ng dˆi v´ a<br />
u<br />
o o<br />
e o<br />
e<br />
e o a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
`<br />
Mˆnh dˆ 3.1. Cho X, Y, Z ⊆ A, α ∈ [0, 1]. Khi d´<br />
e<br />
e<br />
o<br />
.<br />
´<br />
1. Nˆu Y ⊆ X th` X →α Y.<br />
e<br />
ı<br />
´<br />
2. Nˆu X →α Y th` X ∪ Z →α Y ∪ Z.<br />
e<br />
ı<br />
´<br />
3. Nˆu X →→α Y th` X →→α A \ (X ∪ Y ).<br />
e<br />
ı<br />
´<br />
4. Nˆu X →α Y th` X →→α Y.<br />
e<br />
ı<br />
Ch´.ng minh.<br />
u<br />
’<br />
´ e<br />
´<br />
1) Hiˆn nhiˆn d´ng v` ta d˜ biˆt, nˆu Y ⊆ X th` X →1 Y.<br />
e<br />
e u<br />
ı<br />
a e<br />
ı<br />
.i moi c˘p dˆi tu.o.ng u, v ∈ U nˆu u(X ∪ Z) = v(X ∪ Z) th` u(Z) = v(Z) v`u(X) =<br />
´<br />
´<br />
o<br />
e<br />
ı<br />
a<br />
2) V´<br />
. a o<br />
.<br />
.<br />
ı<br />
e<br />
o<br />
a<br />
v(X). V` X →α Y nˆn u(Y ) =α v(Y ). Do d´ u(Y ∪ Z) =α v(Y ∪ Z). Vˆy X ∪ Z →α Y ∪ Z.<br />
.<br />
’<br />
´<br />
’ ’<br />
o<br />
a ınh o<br />
a<br />
o a<br />
ı<br />
3) Khˆng mˆ t t´ tˆ ng qu´t, gia su. X ∩ Y = ∅. Khi d´, d˘t Z = A \ (X ∪ Y ), th`<br />
.<br />
´<br />
a o<br />
Y = A \ (X ∪ Z). T`. X →→α Y suy ra v´.i moi c˘p dˆi tu.o.ng u, v ∈ U m` u(X) = v(X) = x<br />
u<br />
o<br />
a<br />
. .<br />
.<br />
`<br />
´<br />
th` tˆ n tai dˆi tu.o.ng t ∈ U sao cho t(X) = x v` t(Y ) = u(Y ), t(Z) =α v(Z) ho˘c t(Y ) =α<br />
ı o . o<br />
a<br />
a<br />
.<br />
.<br />
u(Y ), t(Z) = v(Z). Do d´ X →→α Z .<br />
o<br />
<br />
’. ˆ<br />
ˆ<br />
`<br />
`<br />
ˆ<br />
MO RONG PHU THUOC HAM VA PHU THUOC DA TRI<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
125<br />
<br />
´<br />
4) D˘t Z = A \ (X ∪ Y ). Do X →α Y nˆn v´.i moi c˘p dˆi tu.o.ng u, v ∈ U m` u(X) =<br />
a<br />
e o<br />
a<br />
. a o<br />
.<br />
.<br />
.<br />
`<br />
o<br />
a<br />
a<br />
a<br />
v(X) = x ta c´ v(Y ) =α u(Y ). B˘ ng c´ch chon t = v ta nhˆn du.o.c t(X) = x, t(Z) = v(Z)<br />
.<br />
.<br />
.<br />
v` t(Y ) =α u(Y ). Vˆy X →→α Y .<br />
a<br />
a<br />
.<br />
’<br />
a a<br />
V´ du 3.1. X´t hˆ thˆng A = (U, {X, Y, Z}) du.o.c cho trong Bang 4, c´c h`m tu.o.ng tu. trˆn<br />
ı .<br />
e e o<br />
.<br />
. e<br />
. ´<br />
.o.c cho trˆn Bang 5.<br />
’<br />
e<br />
VY v` VZ du .<br />
a<br />
`<br />
´<br />
o ˜ a<br />
e ´<br />
/<br />
ı o<br />
o<br />
a<br />
u<br />
a<br />
Khi d´, dˆ thˆy X →→0.8 Y . Nhng X →→0.9 Y v` c´ hai dˆi tu.o.ng t4 v`t5 c`ng b˘ ng<br />
.<br />
.o.ng v n`o<br />
´<br />
x1 trˆn thuˆc t´ X , m˘t kh´c t4 (Y ) = β1 v`t5 (Z) = γ3 , nhng khˆng c´ dˆi tu<br />
e<br />
o ınh<br />
a<br />
a<br />
a<br />
o<br />
o o .<br />
a<br />
.<br />
.<br />
`<br />
’ a<br />
o<br />
o<br />
a<br />
a<br />
a<br />
m` v(X) = x1 dˆ ng th`.i thoa m˜n (v(Y ) = β1 v` v(Z) =0.9 γ3 ) ho˘c (v(Y ) =0.9 β1 v`<br />
a<br />
.<br />
v(Z) = γ3 ).<br />
’<br />
’<br />
a<br />
Ba ng 4<br />
Bang 5. C´c h`m tu.o.ng tu. trˆn VY v` VZ<br />
a a<br />
. e<br />
U<br />
t1<br />
t2<br />
t3<br />
t4<br />
t5<br />
t6<br />
t7<br />
t8<br />
<br />
X<br />
x1<br />
x1<br />
x1<br />
x1<br />
x1<br />
x1<br />
x2<br />
x2<br />
<br />
Y<br />
β1<br />
β2<br />
β3<br />
β1<br />
β3<br />
β2<br />
β1<br />
β1<br />
<br />
Z<br />
γ1<br />
γ1<br />
γ2<br />
γ2<br />
γ3<br />
γ3<br />
γ1<br />
γ2<br />
<br />
Y<br />
β1<br />
β2<br />
β3<br />
<br />
β1<br />
1<br />
05<br />
0.7<br />
<br />
β2<br />
0.5<br />
1<br />
0.9<br />
<br />
β3<br />
0.7<br />
0.9<br />
1<br />
<br />
Z<br />
γ1<br />
γ2<br />
γ3<br />
<br />
γ1<br />
1<br />
06<br />
0.7<br />
<br />
γ2<br />
0.6<br />
1<br />
0.8<br />
<br />
γ3<br />
0.7<br />
0.8<br />
1<br />
<br />
’<br />
ˆ<br />
ˆ<br />
4. KIEM TRA β - PHU THUOC DA TRI<br />
.<br />
.<br />
.<br />
` .<br />
`<br />
4.1. Diˆu kiˆn tˆ n tai - phu thuˆc da tri<br />
e<br />
e o<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.c [?], dˆ nghiˆn c´.u phu thuˆc da tri, c´c t´c gia d˜ thiˆt lˆp ma<br />
’<br />
´ .<br />
’ a<br />
o<br />
e<br />
e u<br />
e a<br />
Trong mˆt b`i b´o tr´<br />
o a a<br />
o<br />
.<br />
.<br />
. a a<br />
.<br />
.a v`o phˆn hoach trˆn c´c gi´ tri thuˆc t´ v` d˜ ch´.ng minh du.o.c r˘ ng,<br />
a<br />
e a a .<br />
o ınh a a u<br />
a<br />
trˆn phu thuˆc du a<br />
a<br />
o<br />
.<br />
.<br />
.<br />
. `<br />
.<br />
.<br />
.<br />
.c l`moi phˆn tu. cua ma trˆn<br />
`<br />
a ’ ’<br />
a<br />
X →→ Y d´ ng khi v` chı khi ma trˆn phu thuˆc l` dˆy d˘c, t´ a .<br />
u<br />
a ’<br />
a<br />
o a ` a u<br />
a .<br />
.<br />
.<br />
.<br />
.<br />
` o a<br />
` o a .<br />
o<br />
a<br />
o a `<br />
a<br />
dˆu c´ gi´ tri 1. Trong tru.`.ng ho.p ma trˆn phu thuˆc l` gˆn d˘c (t´.c l` ch´.a phˆn l´.n c´c<br />
e<br />
a a<br />
u a u<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
ı<br />
u<br />
a<br />
o o ıt o a o ’<br />
sˆ 1), th` ta c˜ ng nhˆn du.o.c mˆt phuthuˆc da tri xˆ p xı(t´.c l` bo di mˆt sˆ ´ bˆ n`o d´ cua<br />
o<br />
o<br />
o<br />
.<br />
. a ’ u a ’<br />
. ´<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
’<br />
’ a e<br />
’ a<br />
bang d˜. liˆu th` nhˆn du.o.c phu thuˆc d´ng). Trˆn co. so. c´c kˆt qua n`y, mˆt thuˆt to´n<br />
u e<br />
ı a<br />
o u<br />
o<br />
a<br />
a<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.ng phu thuˆc v` phu thuˆc xˆ p xı du.a v`o ma trˆn phu thuˆc c˜ng d˜ du.o.c thiˆt<br />
’<br />
´<br />
´<br />
o a<br />
o a ’ .<br />
a<br />
a<br />
o u<br />
e<br />
a<br />
kiˆm ch´<br />
e<br />
u<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
o<br />
a o<br />
o<br />
o ’ a<br />
u<br />
e a .<br />
lˆp. Ph´t triˆ n y to.ng d´, o. dˆy ch´ ng ta s˜ xˆy du.ng mˆt ma trˆn c´ vai tr` tu.o.ng tu. trong<br />
a<br />
a<br />
e ´ ’<br />
.<br />
.<br />
.<br />
.<br />
o<br />
viˆc x´c dinh α−phuthuˆc da tri.<br />
e a .<br />
.<br />
.<br />
.<br />
.<br />
’<br />
a .<br />
e<br />
a .<br />
Trˆn U ta x´c dinh quan hˆ IND(X) x´c dinh bo.i<br />
e<br />
.<br />
u IND(X)v ⇔ u(X) = v(X);<br />
<br />
u, v ∈ U.<br />
<br />
˜ e<br />
a<br />
e<br />
Dˆ kiˆm ch´.ng du.o.c r˘ ng IND(X) l` mˆt quan hˆ tu.o.ng du.o.ng trˆn U . Ta k´ hiˆu ho c´c l´.p<br />
e ’<br />
u<br />
a o<br />
e<br />
y e . a o<br />
. `<br />
.<br />
.<br />
.<br />
.o.ng du.o.ng cua U theo quan hˆ n`y bo.i [X] = {X1 , · · · , Xm }. R˜ r`ng, Y →→α Z d´ng trˆn<br />
’<br />
e a ’<br />
o a<br />
u<br />
e<br />
tu<br />
.<br />
. dˆy ta chı han chˆ viˆc kiˆ m tra phu<br />
’<br />
´ .<br />
’ .<br />
U khi v` chı khi Y →→α Z d´ ng trˆn moi Xi . Do d´, o a<br />
a ’<br />
u<br />
e<br />
o ’<br />
e e<br />
e<br />
.<br />
.<br />
˜<br />
´<br />
’ ’<br />
thuˆc trˆn mˆ i Xi cˆ dinh. K´ hiˆu Z = A \ (X ∪ Y ). Gia su. dom(Xi , Y ) = {β1 , β2 , · · · , βp }<br />
o e<br />
o<br />
o .<br />
y e<br />
.<br />
.<br />
˜<br />
v` dom(Xi , Z) = {γ1 , γ2 , · · · , γq }. V´.i mˆi βj , γk ta k´ hiˆu<br />
a<br />
o o<br />
y e<br />
.<br />
Ej := {t(Z) | t ∈ Xi ; t(Y ) = βj } ⊆ dom(Z);<br />
Fk := {t(Y ) | t ∈ Xi ; t(Z) = γk } ⊆ dom(Y ).<br />
<br />