Danh mục
  • Giáo dục phổ thông
  • Tài liệu chuyên môn
  • Bộ tài liệu cao cấp
  • Văn bản – Biểu mẫu
  • Luận Văn - Báo Cáo
  • Trắc nghiệm Online
Kết quả từ khoá "Faster R-CNN"
11 trang
14 lượt xem
1
14
Ứng dụng mô hình học máy Faster R-CNN trong phát hiện nấm ăn được và không ăn được
Bài viết này nhằm giải quyết vấn đề bằng cách sử dụng mô hình học máy Faster Region-based Convolutional Neural Network (Faster R-CNN) để phân loại nấm ăn được và nấm độc. Mô hình Faster R-CNN được huấn luyện trên tập dữ liệu hình ảnh nấm đa dạng, tập trung vào các đặc điểm hình dạng, màu sắc và kết cấu. Sau quá trình huấn luyện, mô hình đã đạt độ chính xác ấn tượng lên đến 99,10% trong việc phân loại nấm.
gaupanda088
8 trang
64 lượt xem
2
64
Nghiên cứu mô hình học sâu Faster R-CNN để phát hiện và phân loại các tổn thương khu trú thường gặp ở gan trên ảnh chụp cắt lớp vi tính
Bài viết trình bày mục tiêu nghiên cứu: Thu thập dữ liệu, xây dựng, huấn luyện mô hình Faster R-CNN để phát hiện, phân loại các tổn thương khu trú thường gặp ở gan; Kiểm thử, đánh giá hiệu quả mô hình theo tiêu chí về thời gian, độ chính xác. Đối tượng và phương pháp nghiên cứu: Bộ dữ liệu ảnh chụp cắt lớp vi tính tiêm thuốc cản quang vùng bụng có tổn thương gồm nang gan, u mạch máu, ung thư tế bào gan nguyên phát.
viakimichi
27 trang
32 lượt xem
2
32
Tóm tắt Luận văn Thạc sĩ kỹ thuật: Ứng dụng mạng nơ ron tích chập nhận dạng các đối tượng di động
Đề tài “Ứng dụng mạng Nơ ron tích chập nhận dạng các đối tượng di động” được thực hiện nhằm mục tiêu của đề tài là thực nghiệm mô hình Faster R-CNN nhận dạng các đối tượng tĩnh và di động, đưa ra các đánh giá độ chính xác của mô hình trong trường hợp tín hiệu đầu vào lúc bình thường và nhiễu.
xuanphongdacy09

Giới thiệu

Về chúng tôi

Việc làm

Quảng cáo

Liên hệ

Chính sách

Thoả thuận sử dụng

Chính sách bảo mật

Chính sách hoàn tiền

DMCA

Hỗ trợ

Hướng dẫn sử dụng

Đăng ký tài khoản VIP

Zalo/Tel:

093 303 0098

Email:

support@tailieu.vn

Phương thức thanh toán

Layer 1

Theo dõi chúng tôi

Facebook

Youtube

TikTok

Chịu trách nhiệm nội dung: Nguyễn Công Hà. ©2025 Công ty TNHH Tài Liệu trực tuyến Vi Na.
Địa chỉ: 54A Nơ Trang Long, P. Bình Thạnh, TP.HCM - Điện thoại: 0283 5102 888 - Email: info@tailieu.vn
Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015