NKK-HUST

Kiến trúc máy tính

Chương 2 CƠ BẢN VỀ LOGIC SỐ

cuu duong than cong . co m

Nguyễn Kim Khánh Trường Đại học Bách khoa Hà Nội

2017

Kiến trúc máy tính

42

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Nội dung học phần

cuu duong than cong . co m

Chương 1. Giới thiệu chung Chương 2. Cơ bản về logic số Chương 3. Hệ thống máy tính Chương 4. Số học máy tính Chương 5. Kiến trúc tập lệnh Chương 6. Bộ xử lý Chương 7. Bộ nhớ máy tính Chương 8. Hệ thống vào-ra Chương 9. Các kiến trúc song song

2017

Kiến trúc máy tính

43

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Nội dung của chương 2

2.1. Các hệ đếm cơ bản 2.2. Đại số Boole 2.3. Các cổng logic 2.4. Mạch tổ hợp 2.5. Mạch dãy

cuu duong than cong . co m

2017

Kiến trúc máy tính

44

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

2.1. Các hệ đếm cơ bản

n Hệ thập phân (Decimal System)

à con người sử dụng

n Hệ nhị phân (Binary System)

à máy tính sử dụng

n Hệ mười sáu (Hexadecimal System) à dùng để viết gọn cho số nhị phân

cuu duong than cong . co m

2017

Kiến trúc máy tính

45

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

1. Hệ thập phân

n Cơ số 10

n 10 chữ số: 0,1,2,3,4,5,6,7,8,9

n Dùng n chữ số thập phân có thể biểu diễn

được 10n giá trị khác nhau: n 00...000 = 0 n 99...999 = 10n - 1

cuu duong than cong . co m

2017

Kiến trúc máy tính

46

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Dạng tổng quát của số thập phân

,

a...

aaA =

m

n

n

aaa... 01

-

1 -

1 -

Giá trị của A được hiểu như sau:

A = an10n + an−110n−1 +... + a1101 + a0100 + a−110−1 +... + a−m10−m

n

A =

∑ 10i ai

i=−m

cuu duong than cong . co m

2017

Kiến trúc máy tính

47

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Ví dụ số thập phân

472.38 = 4x102 + 7x101 + 2x100 + 3x10-1 + 8x10-2

n Các chữ số của phần nguyên:

n 472 : 10 = 47 dư

2

n 47 : 10 = 4 dư

7

n

4 : 10 = 0 dư

4

n Các chữ số của phần lẻ:

n 0.38 x 10 = 3.8 phần nguyên = 3

cuu duong than cong . co m

n 0.8 x 10 = 8.0 phần nguyên = 8

2017

Kiến trúc máy tính

48

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

2. Hệ nhị phân

n Cơ số 2 n 2 chữ số nhị phân: 0 và 1 n Chữ số nhị phân được gọi là bit (binary digit) n bit là đơn vị thông tin nhỏ nhất n Dùng n bit có thể biểu diễn được 2n giá trị khác

nhau: n 00...000 = 0 n 11...111 = 2n - 1

n Các lệnh của chương trình và dữ liệu trong

cuu duong than cong . co m

máy tính đều được mã hóa bằng số nhị phân

2017

Kiến trúc máy tính

49

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Số nhị phân

Số thập phân

1-bit

2-bit

3-bit

4-bit

0

00

000

0

0000

1

01

001

1

0001

10

010

2

0010

Biểu diễn số nhị phân

11

011

3

0011

100

4

0100

101

5

0101

110

6

0110

111

7

0111

8

1000

9

1001

10

1010

11

1011

cuu duong than cong . co m

12

1100

13

1101

14

1110

15

1111

2017

Kiến trúc máy tính

50

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Đơn vị dữ liệu và thông tin trong máy tính

n bit – chữ số nhị phân (binary digit): là đơn vị thông tin nhỏ nhất, cho phép nhận một trong hai giá trị: 0 hoặc 1.

n byte là một tổ hợp 8 bit: có thể biểu diễn được 256

giá trị (28)

n Qui ước các đơn vị dữ liệu: = 210 bytes

cuu duong than cong . co m

n KB (Kilobyte) n MB (Megabyte) = 210 KB = 210 MB n GB (Gigabyte) = 210 GB n TB (Terabyte) = 210 TB n PB (Petabyte) = 210 PB n EB (Exabyte)

= 1024 bytes = 220bytes (~106) = 230bytes (~109) = 240bytes (~1012) = 250bytes = 260bytes

2017

Kiến trúc máy tính

51

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Qui ước mới về ký hiệu đơn vị dữ liệu

Theo thập phân

Theo nhị phân

Đơn vị

Viết tắt

Viết tắt

Giá trị

Giá trị

Đơn vị

210 = 1024

KB

103

kibibyte

KiB

kilobyte

mebibyte

106

MB

MiB

megabyte

220

gibibyte

109

GB

GiB

gigabyte

230

tebibyte

1012

TB

TiB

terabyte

240

pebibyte

1015

PB

PiB

petabyte

250

exbibyte

1018

EB

EiB

exabyte

260

cuu duong than cong . co m

2017

Kiến trúc máy tính

52

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Dạng tổng quát của số nhị phân

với ai=0 hoặc 1

A = anan−1... a1a0, a−1... a−m

Giá trị của A được tính như sau:

A = an 2n + an−12n−1 +... + a121 + a0 20 + a−12−1 +... + a−m 2−m

n

A =

∑ 2i ai

cuu duong than cong . co m

i=−m

2017

Kiến trúc máy tính

53

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Ví dụ số nhị phân

1101001.1011(2) =

6 5 4 3 2 1 0 -1 -2 -3 -4

= 26 + 25 + 23 + 20 + 2-1 + 2-3 + 2-4

= 64 + 32 + 8 + 1 + 0.5 + 0.125 + 0.0625

= 105.6875(10)

cuu duong than cong . co m

2017

Kiến trúc máy tính

54

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Chuyển đổi số nguyên thập phân sang nhị phân

n Phương pháp 1: chia dần cho 2 rồi lấy

phần dư

n Phương pháp 2: Phân tích thành tổng

của các số 2i à nhanh hơn

cuu duong than cong . co m

2017

Kiến trúc máy tính

55

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Phương pháp chia dần cho 2

n Ví dụ: chuyển đổi 105(10)

n 105 : 2 =

52

dư 1

n 52 : 2 =

0

26

n 26 : 2 =

13

0

n 13 : 2 =

6

1

biểu diễn số dư theo chiều mũi tên

n

6 : 2 =

3

0

n

3 : 2 =

1

1

n

1 : 2 =

0

1

cuu duong than cong . co m

n Kết quả: 105(10) = 1101001(2)

2017

Kiến trúc máy tính

56

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Phương pháp phân tích thành tổng của các 2i

n Ví dụ 1: chuyển đổi 105(10)

n 105 = 64 + 32 + 8 +1 = 26 + 25 + 23 + 20

27

26

22

23

24

25

21

20

128

64

16

32

8

4

2

1

0

1

1

0

1

0

0

1

n Kết quả:

105(10) = 0110 1001(2)

n Ví dụ 2: 17000(10) = 16384 + 512 + 64 + 32 + 8

cuu duong than cong . co m

= 214 + 29 + 26 + 25 + 23

17000(10) = 0100 0010 0110 1000(2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2017

Kiến trúc máy tính

57

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Chuyển đổi số lẻ thập phân sang nhị phân

n Ví dụ 1: chuyển đổi 0.6875(10)

n 0.6875 x 2 = 1.375

phần nguyên = 1

n 0.375 x 2 = 0.75

phần nguyên = 0

n 0.75

phần nguyên = 1

x 2 = 1.5

biểu diễn theo chiều mũi tên

n 0.5 x 2 = 1.0

phần nguyên = 1

n Kết quả : 0.6875(10)= 0.1011(2)

cuu duong than cong . co m

2017

Kiến trúc máy tính

58

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Chuyển đổi số lẻ thập phân sang nhị phân (tiếp)

n Ví dụ 2: chuyển đổi 0.81(10)

n 0.81 x 2 =

1.62 phần nguyên =

1

n 0.62 x 2 =

1.24 phần nguyên =

1

n 0.24 x 2 =

0.48 phần nguyên =

0

n 0.48 x 2 =

0.96 phần nguyên =

0

n 0.96 x 2 =

1.92 phần nguyên =

1

n 0.92 x 2 =

1.84 phần nguyên =

1

n 0.84 x 2 =

1.68 phần nguyên =

1

cuu duong than cong . co m

n

0.81(10) » 0.1100111(2)

2017

Kiến trúc máy tính

59

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

3. Hệ mười sáu (Hexa)

n Cơ số 16

n 16 chữ số: 0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F

n Dùng để viết gọn cho số nhị phân: cứ một nhóm 4-bit sẽ được thay bằng một chữ số Hexa

cuu duong than cong . co m

2017

Kiến trúc máy tính

60

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Quan hệ giữa số nhị phân và số Hexa

4-bit

Số Hexa

Thập phân

0

0000

0

1

0001

1

2

0010

2

3

0011

3

Ví dụ: n 1011 0011(2) = B3(16) n 0000 0000(2) = 00(16)

4

0100

4

5

0101

5

6

0110

6

7

0111

7

n 0010 1101 1001 1010(2) = 2D9A(16) n 1111 1111 1111 1111(2) = FFFF(16)

8

1000

8

9

1001

9

A

1010

10

B

1011

11

cuu duong than cong . co m

C

1100

12

D

1101

13

E

1110

14

F

1111

15

2017

Kiến trúc máy tính

61

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

2.2. Đại số Boole

n Đại số Boole sử dụng các biến logic và phép toán logic n Biến logic có thể nhận giá trị 1 (TRUE) hoặc 0 (FALSE) n Các phép toán logic cơ bản: AND, OR và NOT

n A AND B :

n A OR B :

n NOT A :

A • B hay AB A + B A n Thứ tự ưu tiên: NOT > AND > OR

n Thêm các phép toán logic: NAND, NOR, XOR

n A NAND B:

cuu duong than cong . co m

n A NOR B :

A • B BA + BABABA •+•=Å

n A XOR B:

2017

Kiến trúc máy tính

62

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Phép toán đại số Boole với hai biến

NOT A

A

A

B

B

A

A AND B A•B

A

A OR B A + B

0

0

0

0

0

0

0

1

0

1

0

0

1

1

1

0

1

0

0

0

1

1

NOT là phép toán 1 biến

1

1

1

1

1

1

A NOR B

A NAND B

A

B

A

B

A

B

A + B

A XOR B A Å B

A•B

0

1

0

0

0

0

0

0

1

0

1

0

0

1

1

0

1

1

cuu duong than cong . co m

1

0

0

1

1

0

1

0

1

1

1

0

1

0

1

1

1

0

2017

Kiến trúc máy tính

63

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Các đồng nhất thức của đại số Boole

A • B = B • A

A + B = B + A

A • (B + C) = (A • B) + (A • C)

A + (B • C) = (A + B) • ( A + C)

1 • A = A

0 + A = A

A • A = 0

A + A = 1

0 • A = 0

1 + A = 1

A • A = A

A + A = A

A • (B • C) = (A • B) • C

A + (B + C) = (A + B) + C

A • B = A + B (Định lý De Morgan)

A + B = A • B (Định lý De Morgan)

cuu duong than cong . co m

2017

Kiến trúc máy tính

64

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

2.3. Các cổng logic (Logic Gates)

n Thực hiện các hàm logic:

n NOT, AND, OR, NAND, NOR, XOR

n Cổng logic một đầu vào:

n Cổng NOT

n Cổng hai đầu vào:

n AND, OR, XOR, NAND, NOR

n Cổng nhiều đầu vào

cuu duong than cong . co m

2017

Kiến trúc máy tính

65

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

368 CHAPTER 11 / DIGITAL LOGIC

11.2 GATES

The fundamental building block of all digital logic circuits is the gate. Logical func-

tions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a sim-

ple Boolean operation on its input signals. The basic gates used in digital logic are

AND, OR, NOT, NAND, NOR, and XOR. Figure 11.1 depicts these six gates. Each

gate is defined in three ways: graphic symbol, algebraic notation, and truth table.

The symbology used in this chapter is from the IEEE standard, IEEE Std 91. Note

that the inversion (NOT) operation is indicated by a circle.

Each gate shown in Figure 11.1 has one or two inputs and one output.

NKK-HUST

Ký hiệu các cổng logic

However, as indicated in Table 11.1b, all of the gates except NOT can have more than two inputs. Thus, (X + Y + Z) can be implemented with a single OR gate with three inputs. When one or more of the values at the input are changed, the correct output signal appears almost instantaneously, delayed only by the propaga- tion time of signals through the gate (known as the gate delay). The significance of this delay is discussed in Section 11.3. In some cases, a gate is implemented with two outputs, one output being the negation of the other output.

Graphical Symbol

Truth Table

Name

Algebraic Function

A

AND

F

B

F ! A • B or F ! AB

A

F ! A " B

OR

F

B

A B F 0 0 0 1 0 0 0 0 1 1 1 1 A B F 0 0 0 1 1 0 0 1 1 1 1 1

NOT

A

F

A F 1 0 0 1

F ! A or F ! A#

A

F ! AB

NAND

F

B

A

cuu duong than cong . co m

F ! A " B

NOR

F

B

A

F

XOR

F ! A ! B

B

2017

66

Kiến trúc máy tính

A B F 0 1 0 1 1 0 0 1 1 1 0 1 A B F 0 0 1 0 1 0 1 0 0 1 1 0 A B F 0 0 0 0 1 1 1 0 1 1 1 0

Figure 11.1 Basic Logic Gates

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Tập đầy đủ

n Là tập các cổng có thể thực hiện được bất kỳ

hàm logic nào từ các cổng của tập đó

n Một số ví dụ về tập đầy đủ:

n {AND, OR, NOT}

n {AND, NOT}

n {OR, NOT}

n {NAND}

n {NOR}

cuu duong than cong . co m

2017

Kiến trúc máy tính

67

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

11.2 / GATES 369

Here we introduce a common term: we say that to assert a signal is to cause a

signal line to make a transition from its logically false (0) state to its logically true

(1) state. The true (1) state is either a high or low voltage state, depending on the

type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication

are simpler if only one or two types of gates are used. Thus, it is important to identify

functionally complete sets of gates. This means that any Boolean function can be imple-

mented using only the gates in the set. The following are functionally complete sets:

• AND, OR, NOT

• AND, NOT

• OR, NOT

• NAND

• NOR

It should be clear that AND, OR, and NOT gates constitute a functionally

complete set, because they represent the three operations of Boolean algebra. For

the AND and NOT gates to form a functionally complete set, there must be a way

to synthesize the OR operation from the AND and NOT operations. This can be

done by applying DeMorgan’s theorem:

A + B = A # B A OR B = NOT ((NOT A) AND (NOT B))

NKK-HUST

Similarly, the OR and NOT operations are functionally complete because

they can be used to synthesize the AND operation. Sử dụng cổng NAND

Figure 11.2 shows how the AND, OR, and NOT functions can be implemented solely with NAND gates, and Figure 11.3 shows the same thing for NOR gates. For this reason, digital circuits can be, and frequently are, implemented solely with NAND gates or solely with NOR gates.

A

A

A

A B

A B

B

A

A

A+B

B

cuu duong than cong . co m

B

Figure 11.2 Some Uses of NAND Gates

2017

Kiến trúc máy tính

68

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Sử dụng cổng NOR

370 CHAPTER 11 / DIGITAL LOGIC

A

A

(A+B)

A+B

A B

A

A

A B

B

cuu duong than cong . co m

B

Figure 11.3 Some Uses of NOR Gates

2017

69

https://fb.com/tailieudientucntt

CuuDuongThanCong.com

With gates, we have reached the most primitive circuit level of computer hardware. An examination of the transistor combinations used to construct gates Kiến trúc máy tính departs from that realm and enters the realm of electrical engineering. For our pur- poses, however, we are content to describe how gates can be used as building blocks to implement the essential logical circuits of a digital computer.

11.3 COMBINATIONAL CIRCUITS

A combinational circuit is an interconnected set of gates whose output at any time

is a function only of the input at that time. As with a single gate, the appearance of

the input is followed almost immediately by the appearance of the output, with only

gate delays.

In general terms, a combinational circuit consists of n binary inputs and m

binary outputs. As with a gate, a combinational circuit can be defined in three ways:

• Truth table: For each of the 2 n possible combinations of input signals, the

binary value of each of the m output signals is listed.

• Graphical symbols: The interconnected layout of gates is depicted.

• Boolean equations: Each output signal is expressed as a Boolean function of

its input signals.

Implementation of Boolean Functions

Any Boolean function can be implemented in electronic form as a network of gates.

For any given function, there are a number of alternative realizations. Consider the

Boolean function represented by the truth table in Table 11.3. We can express this func-

tion by simply itemizing the combinations of values of A, B, and C that cause F to be 1:

(11.1)

F + ABC + ABC + ABC

NKK-HUST

A.3 Programmable Logic

585

Một số vi mạch logic

1 1 1 14 14 14 VDD VDD 1A 1A 1Y VDD

2 2 2 13 13 13 4Y 6A 1B 1Y 1A 4B

3 3 3 12 12 12 4B 6Y 1Y 2A 1B 4A

4 4 4 11 11 11 2Y 4A 5A 2A 2Y 4Y

5 5 5 10 10 10 3Y 3A 5Y 2B 2A 3B

6 6 6 9 9 9 3B 3Y 4A 2Y 2B 3A

7 7 7 8 8 GND 3A 4Y GND GND 3Y 8 7400 NAND

7404 NOT

7402 NOR

1 14 14 1 1 14 1A VDD VDD 1A 1A VDD

2 13 13 2 2 13 1B 1B 1B 4B 1C 4B

3 12 12 3 3 12 1Y 2A 1Y 1Y 4A 4A

4 11 11 4 4 11 2A 2B 2A 3C 4Y 4Y

5 10 10 5 5 10

cuu duong than cong . co m

2B 2C 2B 3B 3B 3B

6 9 6 9 6 9 2Y 2Y 2Y 3A 3A 3A

7 8 7 8 7 8 GND GND GND 3Y 3Y 3Y

7408 AND

7411 AND3

7432 OR

2017

70

Kiến trúc máy tính 14

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

1 1 1 14 14 1A VDD 1A VDD VDD 1CLR

reset D Q

reset

2 2 2 13 13 13 1B 1B 1D 4B 2D 2CLR

Q

DQ

set

3 3 3 12 12 12 1Y NC 1CLK 2D 4A 2C

Q

set

4 4 4 11 11 11 2A 2CLK 1C 4Y NC 1PRE

5 5 5 10 10 10 2B 1D 1Q 3B 2B 2PRE

6 6 6 9 9 9 2Q 2Y 1Y 3A 2A 1Q

7 7 7 8 8 8 2Q GND GND GND 3Y 2Y

7421 AND4

7474 FLOP

7486 XOR

Figure A.1 Common 74xx-series logic gates

NKK-HUST

2.4. Mạch tổ hợp

n Mạch logic là mạch bao gồm:

n Các đầu vào (Inputs) n Các đầu ra (Outputs) n Đặc tả chức năng (Functional specification) n Đặc tả thời gian (Timing specification)

n Các kiểu mạch logic:

n Mạch tổ hợp (Combinational Circuits)

n Mạch không nhớ n Đầu ra được xác định bởi các giá trị hiện tại của đầu vào

n Mạch dãy (Sequential Circuits)

cuu duong than cong . co m

n Mạch có nhớ n Đầu ra được xác định bởi các giá trị trước đó và giá trị hiện tại

của đầu vào

2017

Kiến trúc máy tính

71

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Mạch tổ hợp

n Mạch tổ hợp là mạch logic trong đó đầu ra chỉ

phụ thuộc đầu vào ở thời điểm hiện tại

n Là mạch không nhớ và được thực hiện bằng

các cổng logic

n Mạch tổ hợp có thể được định nghĩa theo ba

cách: n Bảng thật (True Table) n Dạng sơ đồ n Phương trình Boole

cuu duong than cong . co m

2017

Kiến trúc máy tính

72

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

11.3 / COMBINATIONAL CIRCUITS 371

Table 11.3 A Boolean Function of Three Variables

A

B

C

F

0

0

0

0

0

0

1

0

0

1

0

1

0

1

1

1

1

0

0

0

1

0

1

0

1

1

0

1

1

1

1

0

There are three combinations of input values that cause F to be 1, and if any

one of these combinations occurs, the result is 1. This form of expression, for self-

evident reasons, is known as the sum of products (SOP) form. Figure 11.4 shows a

straightforward implementation with AND, OR, and NOT gates.

Another form can also be derived from the truth table. The SOP form

expresses that the output is 1 if any of the input combinations that produce 1 is true. We can also say that the output is 1 if none of the input combinations that produce 0 is true. Thus,

NKK-HUST

A B C

A B C

A B C

A B C

A B C

#

#

#

#

F =

This can be rewritten using a generalization of DeMorgan’s theorem: 2

1

1

2

1

1

1

2

Ví dụ

2 2 (X # Y # Z) = X + Y + Z

B

C

A

Đầu vào

Đầu ra

A

B

F

C

F

Figure 11.4 Sum-of-Products Implementation of Table 11.3

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 1 0 1 0 1

cuu duong than cong . co m

BCACBAF

CAB

+

=

+

2017

Kiến trúc máy tính

73

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Bộ chọn kênh (Multiplexer - MUX)

n 2n đầu vào dữ liệu n n đầu vào chọn n 1 đầu ra dữ liệu n Mỗi tổ hợp đầu vào chọn (S) xác định đầu vào

dữ liệu nào (D) sẽ được nối với đầu ra (F)

cuu duong than cong . co m

2017

Kiến trúc máy tính

74

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

380 CHAPTER 11 / DIGITAL LOGIC

A

B

F

B

C

Figure 11.11 NAND Implementation of

Table 11.3

11.3 / COMBINATIONAL CIRCUITS 381

NAND AND NOR IMPLEMENTATIONS Another consideration in the

Table 11.7 4-to-1 Multiplexer Truth Table

implementation of Boolean functions concerns the types of gates used. It is sometimes

S2

S1

F

desirable to implement a Boolean function solely with NAND gates or solely with

NOR gates. Although this may not be the minimum-gate implementation, it has the

0

0

D0

advantage of regularity, which can simplify the manufacturing process. Consider

0

1

D1

1

0

D2

again Equation (11.3):

1

1

D3

F = B(A + C)

Because the complement of the complement of a value is just the original value,

output signal F. To select one of the four possible inputs, a 2-bit selection code is

F = B(A + C) = (AB + (BC)

needed, and this is implemented as two select lines labeled S1 and S2.

An example 4-to-1 multiplexer is defined by the truth table in Table 11.7. This

Applying DeMorgan’s theorem,

is a simplified form of a truth table. Instead of showing all possible combinations of

input variables, it shows the output as data from line D0, D1, D2, or D3. Figure 11.13

F = (AB)•(BC)

shows an implementation using AND, OR, and NOT gates. S1 and S2 are connected

which has three NAND forms, as illustrated in Figure 11.11.

to the AND gates in such a way that, for any combination of S1 and S2, three of the

Multiplexers

NKK-HUST

AND gates will output 0. The fourth AND gate will output the value of the selected line, which is either 0 or 1. Thus, three of the inputs to the OR gate are always 0, and the output of the OR gate will equal the value of the selected input gate. Using this regular organization, it is easy to construct multiplexers of size 8-to-1, 16-to-1, and so on.

Bộ chọn kênh 4 đầu vào

The multiplexer connects multiple inputs to a single output. At any time, one of the inputs is selected to be passed to the output. A general block diagram representation is shown in Figure 11.12. This represents a 4-to-1 multiplexer. There are four input lines, labeled D0, D1, D2, and D3. One of these lines is selected to provide the

Multiplexers are used in digital circuits to control signal and data routing. An example is the loading of the program counter (PC). The value to be loaded into the program counter may come from one of several different sources:

S2

S1

D0

D1

F

4-to-1 MUX

D2

D0

D3

D1

S2

S1

F

Figure 11.12 4-to-1 Multiplexer Đầu vào chọn Đầu ra Representation

D2

F

S2

S1

D3

cuu duong than cong . co m

Figure 11.13 Multiplexer Implementation

F = D0 • S2 • S1+ D1• S2 • S1+ D2 • S2 • S1+ D3• S2 • S1

0 0 1 1

0 1 0 1

D0 D1 D2 D3

2017

Kiến trúc máy tính

75

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Bộ giải mã (Decoder)

n N đầu vào, 2N đầu ra n Với một tổ hợp của N đầu vào, chỉ có một đầu ra tích cực

(khác với các đầu ra còn lại)

n Ví dụ: Bộ giải mã 2 ra 4

A1

A0

2:4 Decoder

A1 A0

Y3

11 10 01 00

Y3 Y2 Y1 Y0

Y2

cuu duong than cong . co m

Y1

Y0

A1 0 0 1 1

A0 0 1 0 1

Y3 Y2 Y1 Y0 1 0 0 0 0 0 0 1

0 0 1 0

0 1 0 0

2017

Kiến trúc máy tính

76

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Thực hiện bộ giải mã 3 ra 8

11.3 / COMBINATIONAL CIRCUITS 383

A

000

D0

B

001

D1

C

010

D2

011

D3

100

D4

101

D5

cuu duong than cong . co m

110

D6

111

D7

Figure 11.15 Decoder with 3 Inputs and 23 = 8 Outputs

2017

Kiến trúc máy tính

77

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

A0

A7

256 ! 8

256 ! 8

256 ! 8

256 ! 8

RAM

RAM

RAM

RAM

Enable

Enable

Enable

Enable

2-to-4

Decoder

A8

A9

Figure 11.16 Address Decoding

NKK-HUST

Bộ cộng

n Bộ cộng bán phần 1-bit (Half-adder)

n Cộng hai bit tạo ra bit tổng và bit nhớ ra

n Bộ cộng toàn phần 1-bit (Full-adder)

n Cộng 3 bit n Cho phép xây dựng bộ cộng N-bit

cuu duong than cong . co m

2017

Kiến trúc máy tính

78

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Bộ cộng bán phần 1-bit

A

B

1

0

1

0

+ 0

+ 1

+ 1

+ 0

Cout

1-bit Half Adder

1

1

10

0

S

Đầu ra

Đầu vào

B

S

A

Cout

BA

S

0

0

0

0

AB

C

Å= out =

1

0

1

0

cuu duong than cong . co m

0

1

0

1

1

0

1

1

2017

Kiến trúc máy tính

79

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Bộ cộng toàn phần 1-bit

A

B

Cin

Cout

S = ABC + ABC + ABC + ABC Cout = AB + AC + BC

1-bit Full Adder

11.3 / COMBINATIONAL CIRCUITS 387

S

A B C

Đầu ra

Đầu vào

A B C

S

A

B

S Sum

Cout 0

0

Cin 0

0

0

A B C

1

0

0

0

1

0

1

0

1

0

A B C

1

0

0

1

1

A B

cuu duong than cong . co m

1

0

1

0

0

Carry

0

1

1

0

1

Cout

A C

0

1

1

1

0

B C

1

1

1

1

1

2017

Kiến trúc máy tính

80

Figure 11.20 Implementation of an Adder

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

Thus we have the necessary logic to implement a multiple-bit adder such as

shown in Figure 11.21. Note that because the output from each adder depends on

the carry from the previous adder, there is an increasing delay from the least signifi-

cant to the most significant bit. Each single-bit adder experiences a certain amount

of gate delay, and this gate delay accumulates. For larger adders, the accumulated

delay can become unacceptably high.

If the carry values could be determined without having to ripple through all

the previous stages, then each single-bit adder could function independently, and

delay would not accumulate. This can be achieved with an approach known as carry

lookahead. Let us look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to

any stage of the adder without reference to previous carry values. We have

A31

B31

A24 B24

A23

B23

A16 B16

A15

B15

A8 B8

A7

B7

A0 B0

C23

C15

C7

8-bit

8-bit

8-bit

8-bit

Cin

Cout

adder

adder

adder

adder

S31

S24

S23

S16

S15

S8

S7

S0

Figure 11.21 Construction of a 32-Bit Adder Using 8-Bit Adders

386 CHAPTER 11 / DIGITAL LOGIC

Table 11.9 Binary Addition Truth Tables

(b) Addition with Carry Input

(a) Single-Bit Addition

A

Sum

B

Cin

Cout

A

B

Sum

Carry

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

0

1

0

11.3 / COMBINATIONAL CIRCUITS 387

1

1

0

1

0

1

1

0

1

A

1

0

0

1

0

B

C

1

0

1

0

1

A

1

1

0

0

1

B

1

1

1

1

1

C

Sum

A

B

C

0

0

1

1

A

+0

+1

+0

+1

B

0

1

1

10

C

A

However, addition can still be dealt with in Boolean terms. In Table 11.9a, we

B

show the logic for adding two input bits to produce a 1-bit sum and a carry bit.

This truth table could easily be implemented in digital logic. However, we are not

interested in performing addition on just a single pair of bits. Rather, we wish to

A

Carry

add two n-bit numbers. This can be done by putting together a set of adders so that

C

the carry from one adder is provided as input to the next. A 4-bit adder is depicted

in Figure 11.19.

B

For a multiple-bit adder to work, each of the single-bit adders must have three

C

inputs, including the carry from the next-lower-order adder. The revised truth table

Figure 11.20 Implementation of an Adder

appears in Table 11.9b. The two outputs can be expressed:

Sum = A BC + ABC + ABC + ABC

NKK-HUST

Carry = AB + AC + BC

A3

A2

A1

A0

B1

B0

Thus we have the necessary logic to implement a multiple-bit adder such as Bộ cộng 4-bit và bộ cộng 32-bit shown in Figure 11.21. Note that because the output from each adder depends on Figure 11.20 is an implementation using AND, OR, and NOT gates. the carry from the previous adder, there is an increasing delay from the least signifi- cant to the most significant bit. Each single-bit adder experiences a certain amount of gate delay, and this gate delay accumulates. For larger adders, the accumulated B2 B3 delay can become unacceptably high.

0

Cin

Cin

C1

C0

C3

C2

Cin

Cin

Overflow signal

If the carry values could be determined without having to ripple through all the previous stages, then each single-bit adder could function independently, and delay would not accumulate. This can be achieved with an approach known as carry lookahead. Let us look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to

any stage of the adder without reference to previous carry values. We have

S0

S2

S1

S3

Figure 11.19 4-Bit Adder

A16 B16

A8 B8

A23

A15

B23

B15

A31

B31

A24 B24

A7

B7

A0 B0

C23

C15

C7

Cin

Cout

8-bit adder

8-bit adder

8-bit adder

8-bit adder

cuu duong than cong . co m

S31

S24

S23

S16

S15

S8

S7

S0

Figure 11.21 Construction of a 32-Bit Adder Using 8-Bit Adders

2017

Kiến trúc máy tính

81

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

2.5. Mạch dãy

n Mạch dãy là mạch logic trong đó đầu ra phụ thuộc giá trị đầu vào ở thời điểm hiện tại và đầu vào ở thời điểm quá khứ

n Là mạch có nhớ, được thực hiện bằng phần tử nhớ (Latch, Flip-Flop) và có thể kết hợp với các cổng logic

cuu duong than cong . co m

2017

Kiến trúc máy tính

82

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

392 CHAPTER 11 / DIGITAL LOGIC

Q

K

Clock

J

Q

Figure 11.26 J–K Flip-Flop

NKK-HUST

causing the output to be 1; if only the K input is asserted, the result is a reset function, causing the output to be 0. When both J and K are 1, the function performed is referred to as the toggle function: the output is reversed. Thus, if Q is 1 and 1 is applied to J and K, then Q becomes 0. The reader should verify that the implementation of Figure 11.26 produces this characteristic function.

Các Flip-Flop cơ bản

Truth Table

Name

Graphical Symbol

S

Q

S

R

Qn!1

Ck

S–R

Qn 0 1 –

0 1 0 1

0 0 1 1

R

Q

Q

J

J

K

Qn!1

Ck

J–K

0 1 0 1

0 0 1 1

Qn 0 1 Qn

K

Q

D

Qn!1

D

Q

cuu duong than cong . co m

Ck

0 1

0 1

D

Q

2017

Kiến trúc máy tính

83

Figure 11.27 Basic Flip-Flops

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

S-R Latch và các Flip-Flop

11.4 / SEQUENTIAL CIRCUITS 389

11.4 / SEQUENTIAL CIRCUITS 391

R

Q

R

Q

Clock

11.4 / SEQUENTIAL CIRCUITS 391

R

Q

Q

S

Q

Figure 11.24 Clocked S–R Flip-Flop

S Clock

Figure 11.22 The S–R Latch Implemented with NOR Gates

Q

S-R Flip-Flop

S-R Latch

Q

S

392 CHAPTER 11 / DIGITAL LOGIC

Figure 11.24 Clocked S–R Flip-Flop

Clock

Q

K

Q

Q

First, let us show that the circuit is bistable. Assume that both S and R are 0 and that Q is 0. The inputs to the lower NOR gate are Q = 0 and S = 0. Thus, the output Q = 1 means that the inputs to the upper NOR gate are Q = 1 and R = 0, which has the output Q = 0. Thus, the state of the circuit is internally consistent and remains stable as long as S = R = 0. A similar line of reasoning shows that the state Q = 1, Q = 0 is also stable for R = S = 0.

D

Clock

Figure 11.25 D Flip-Flop

Clock

Q

J

Q

D

cuu duong than cong . co m

Figure 11.25 D Flip-Flop

Figure 11.26 J–K Flip-Flop

Thus, this circuit can function as a 1-bit memory. We can view the output Q as the “value” of the bit. The inputs S and R serve to write the values 1 and 0, respec- tively, into memory. To see this, consider the state Q = 0, Q = 1, S = 0, R = 0. Suppose that S changes to the value 1. Now the inputs to the lower NOR gate are S = 1, Q = 0. After some time delay ^t, the output of the lower NOR gate will be Q = 0 (see Figure 11.23). So, at this point in time, the inputs to the upper NOR gate become R = 0, Q = 0. After another gate delay of ^t the output Q becomes 1. This is again a stable state. The inputs to the lower gate are now S = 1, Q = 1, which maintain the output Q = 0. As long as S = 1 and R = 0, the outputs will remain Q = 1, Q = 0. Furthermore, if S returns to 0, the outputs will remain unchanged.

D Flip Flop

J-K Flip-Flop

Kiến trúc máy tính

arrangement. This device is referred to as a clocked S–R flip-flop. Note that the R and S inputs are passed to the NOR gates only during the clock pulse. D FLIP-FLOP One problem with S–R flip-flop is that the condition R = 1, S = 1 must be avoided. One way to do this is to allow just a single input. The D flip-flop accomplishes this. Figure 11.25 shows a gate implementation of the D flip-flop. By using an inverter, the nonclock inputs to the two AND gates are guaranteed to be the opposite of each other. causing the output to be 1; if only the K input is asserted, the result is a reset function, The D flip-flop is sometimes referred to as the data flip-flop because it is, in causing the output to be 0. When both J and K are 1, the function performed is effect, storage for one bit of data. The output of the D flip-flop is always equal to the referred to as the toggle function: the output is reversed. Thus, if Q is 1 and 1 is applied most recent value applied to the input. Hence, it remembers and produces the last to J and K, then Q becomes 0. The reader should verify that the implementation of input. It is also referred to as the delay flip-flop, because it delays a 0 or 1 applied to 84 Figure 11.26 produces this characteristic function. its input for a single clock pulse. We can capture the logic of the D flip-flop in the following truth table:

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

D Qn ! 1

The D flip-flop is sometimes referred to as the data flip-flop because it is, in effect, storage for one bit of data. The output of the D flip-flop is always equal to the most recent value applied to the input. Hence, it remembers and produces the last

arrangement. This device is referred to as a clocked S–R flip-flop. Note that the R and S inputs are passed to the NOR gates only during the clock pulse. The R output performs the opposite function. When R goes to 1, it forces D FLIP-FLOP One problem with S–R flip-flop is that the condition R = 1, S = 1 Q = 0, Q = 1 regardless of the previous state of Q and Q. Again, a time delay of must be avoided. One way to do this is to allow just a single input. The D flip-flop 2^t occurs before the final state is established (Figure 11.23). accomplishes this. Figure 11.25 shows a gate implementation of the D flip-flop. By The S–R latch can be defined with a table similar to a truth table, called a using an inverter, the nonclock inputs to the two AND gates are guaranteed to be characteristic table, which shows the next state or states of a sequential circuit as 2017 the opposite of each other. a function of current states and inputs. In the case of the S–R latch, the state can be defined by the value of Q. Table 11.10a shows the resulting characteristic table. Observe that the inputs S = 1, R = 1 are not allowed, because these would pro- duce an inconsistent output (both Q and Q equal 0). The table can be expressed

Name

Graphical Symbol

Truth Table

input. It is also referred to as the delay flip-flop, because it delays a 0 or 1 applied to

0

0

more compactly, as in Table 11.10b. An illustration of the behavior of the S–R latch

its input for a single clock pulse. We can capture the logic of the D flip-flop in the

1

1

is shown in Table 11.10c.

following truth table:

Q

S

S

R

Qn!1

CLOCKED S–R FLIP-FLOP The output of the S–R latch changes, after a brief

J–K FLIP-FLOP Another useful flip-flop is the J–K flip-flop. Like the S–R flip-flop,

D Qn ! 1

time delay, in response to a change in the input. This is referred to as asynchronous

0

0

Qn

it has two inputs. However, in this case all possible combinations of input values are

operation. More typically, events in the digital computer are synchronized to a clock

Ck

0

0

S–R

0

1

0

valid. Figure 11.26 shows a gate implementation of the J–K flip-flop, and Figure 11.27

pulse, so that changes occur only when a clock pulse occurs. Figure 11.24 shows this

1

1

0

1

1

shows its characteristic table (along with those for the S–R and D flip-flops). Note

1

1

R

Q

that the first three combinations are the same as for the S–R flip-flop. With no input

J–K FLIP-FLOP Another useful flip-flop is the J–K flip-flop. Like the S–R flip-flop,

asserted, the output is stable. If only the J input is asserted, the result is a set function,

it has two inputs. However, in this case all possible combinations of input values are

valid. Figure 11.26 shows a gate implementation of the J–K flip-flop, and Figure 11.27

J

Q

J

K

Qn!1

shows its characteristic table (along with those for the S–R and D flip-flops). Note

0

0

Qn

that the first three combinations are the same as for the S–R flip-flop. With no input

Ck

J–K

0

1

0

asserted, the output is stable. If only the J input is asserted, the result is a set function,

1

1

0

1

1

Qn

K

Q

D

Qn!1

D

Q

0

0

Ck

1

1

D

Q

Figure 11.27 Basic Flip-Flops

NKK-HUST

Thanh ghi 8-bit song song

11.4 / SEQUENTIAL CIRCUITS 393

Data lines

D18

D12

D11

D17

D13

D14

D15

D16

D

Q

D

D

Q

Q

Q

Q

D

D

D

Q

D

Q

D

Q

Clk

Clk

Clk

Clk

Clk

Clk

Clk

Clk

Clock Load

D08

D07

D06

D05

D04

D03

D02

D01

Output lines

Figure 11.28 8-Bit Parallel Register

cuu duong than cong . co m

Registers

As an example of the use of flip-flops, let us first examine one of the essential ele- ments of the CPU: the register. As we know, a register is a digital circuit used within the CPU to store one or more bits of data. Two basic types of registers are com- monly used: parallel registers and shift registers.

Kiến trúc máy tính

85

2017

https://fb.com/tailieudientucntt

CuuDuongThanCong.com

PARALLEL REGISTERS A parallel register consists of a set of 1-bit memories that can be read or written simultaneously. It is used to store data. The registers that we

have discussed throughout this book are parallel registers.

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register

using D flip-flops. A control signal, labeled load, controls writing into the register

from signal lines, D11 through D18. These lines might be the output of multiplexers,

so that data from a variety of sources can be loaded into the register.

SHIFT REGISTER A shift register accepts and/or transfers information serially.

Consider, for example, Figure 11.29, which shows a 5-bit shift register constructed

from clocked D flip-flops. Data are input only to the leftmost flip-flop. With each

clock pulse, data are shifted to the right one position, and the rightmost bit is

transferred out.

Shift registers can be used to interface to serial I/O devices. In addition, they

can be used within the ALU to perform logical shift and rotate functions. In this

D

Q

D

Q

D

Q

D

Q

D

Q

Serial in

Serial out

Clk

Clk

Clk

Clk

Clk

Clock

Figure 11.29 5-Bit Shift Register

11.4 / SEQUENTIAL CIRCUITS 393

Data lines

D18

D17

D16

D15

D14

D13

D12

D11

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Clk

Clk

Clk

Clk

Clk

Clk

Clk

Clk

Clock

Load

D08

D07

D06

D05

D04

D03

D02

D01

Output lines

Figure 11.28 8-Bit Parallel Register

Registers

As an example of the use of flip-flops, let us first examine one of the essential ele-

ments of the CPU: the register. As we know, a register is a digital circuit used within

the CPU to store one or more bits of data. Two basic types of registers are com-

monly used: parallel registers and shift registers.

PARALLEL REGISTERS A parallel register consists of a set of 1-bit memories that

can be read or written simultaneously. It is used to store data. The registers that we

have discussed throughout this book are parallel registers.

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register

using D flip-flops. A control signal, labeled load, controls writing into the register

from signal lines, D11 through D18. These lines might be the output of multiplexers,

so that data from a variety of sources can be loaded into the register.

NKK-HUST

Thanh ghi dịch 5-bit

SHIFT REGISTER A shift register accepts and/or transfers information serially. Consider, for example, Figure 11.29, which shows a 5-bit shift register constructed from clocked D flip-flops. Data are input only to the leftmost flip-flop. With each clock pulse, data are shifted to the right one position, and the rightmost bit is transferred out.

Shift registers can be used to interface to serial I/O devices. In addition, they can be used within the ALU to perform logical shift and rotate functions. In this

D

Q

D

Q

D

D

D

Q

Q

Q

Serial in

Serial out

Clk

Clk

Clk

Clk

Clk

Clock

Figure 11.29 5-Bit Shift Register

cuu duong than cong . co m

2017

Kiến trúc máy tính

86

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

394 CHAPTER 11 / DIGITAL LOGIC

latter capacity, they need to be equipped with parallel read/write circuitry as well

as serial.

Counters

Another useful category of sequential circuit is the counter. A counter is a register

whose value is easily incremented by 1 modulo the capacity of the register; that is,

after the maximum value is achieved the next increment sets the counter value to 0.

Thus, a register made up of n flip-flops can count up to 2n - 1. An example of a

counter in the CPU is the program counter.

Counters can be designated as asynchronous or synchronous, depending on

the way in which they operate. Asynchronous counters are relatively slow because

the output of one flip-flop triggers a change in the status of the next flip-flop. In a

synchronous counter, all of the flip-flops change state at the same time. Because the

latter type is much faster, it is the kind used in CPUs. However, it is useful to begin

the discussion with a description of an asynchronous counter.

RIPPLE COUNTER An asynchronous counter is also referred to as a ripple counter,

NKK-HUST

because the change that occurs to increment the counter starts at one end and “ripples” through to the other end. Figure 11.30 shows an implementation of a 4-bit counter using J–K flip-flops, together with a timing diagram that illustrates its behavior. The timing diagram is idealized in that it does not show the propagation delay that occurs as the signals move down the series of flip-flops. The output of Bộ đếm 4-bit the leftmost flip-flop (Q0) is the least significant bit. The design could clearly be extended to an arbitrary number of bits by cascading more flip-flops.

High

J

Q

J

J

J

Q

Q

Q

Ck

Ck

Ck

Ck

Clock

Q

Q

Q

Q

K

K

K

K

Q2

Q3

Q0

Q1

(a) Sequential circuit

Clock

Q0

Q1

Q2

cuu duong than cong . co m

Q3

(b) Timing diagram

Figure 11.30 Ripple Counter

2017

Kiến trúc máy tính

87

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

NKK-HUST

Hết chương 2

cuu duong than cong . co m

2017

Kiến trúc máy tính

88

CuuDuongThanCong.com

https://fb.com/tailieudientucntt