intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng môn Toán tin - Chương 6: Lý thuyết đồ thị

Chia sẻ: ảnh ảo | Ngày: | Loại File: PDF | Số trang:77

104
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng môn "Toán tin - Chương 6: Lý thuyết đồ thị" trình bày các nội dung: Khái niệm cơ bản về lý thuyết đồ thị, đồ thị có hướng và vô hướng, đồ thị đặc biệt, chu trình và đường đi, các bài toán liên quan. Hi vọng đây sẽ là một tài liệu tham khảo hữu ích dành cho các bạn sinh viên Công nghệ thông tin dùng làm tài liệu tham khảo phục vụ học tập và nghiên cứu.

Chủ đề:
Lưu

Nội dung Text: Bài giảng môn Toán tin - Chương 6: Lý thuyết đồ thị

  1. 1. Khái niệm cơ bản 2. Đồ thị có hướng & vô hướng 3. Đồ thị đặc biệt 4. Chu trình & Đường đi 5. Các bài toán liên quan
  2. Định nghĩa 1: Đồ thị vô hướng G = (V, E) gồm: i) V là tập hợp khác rỗng mà các phần tử của nó gọi là đỉnh (vertex) của G. ii) E là đa tập hợp gồm các cặp không sắp thứ tự của hai đỉnh. Mỗi phần tử của E được gọi là một cạnh (edge) của G. Ký hiệu uv. 3
  3.  Nếu uv là một cung (cạnh) thì ta nói:  Đỉnh u và v kề nhau.  Đỉnh u gọi là đỉnh đầu (gốc), đỉnh v là đỉnh cuối (ngọn) của cung uv. Đỉnh v là đỉnh sau của đỉnh u.  Hai cung có cùng gốc và ngọn gọi là cung song song.  Cung có điểm gốc và ngọn trùng nhau gọi là khuyên. 5
  4. b c a d e b a h k g c d b a c d 6
  5.  Định nghĩa 2. Đồ thị vô hướng không có cạnh song song và không có khuyên gọi là đơn đồ thị vô hướng.  Định nghĩa 3. Đồ thị vô hướng cho phép có cạnh song song nhưng không có khuyên gọi là đa đồ thị vô hướng.  Định nghĩa 4. Đồ thị vô hướng cho phép có cạnh song song và có khuyên gọi là giả đồ thị 7
  6. Đa đồ thị có hướng G =(V,E) gồm: i) V là tập hợp khác rỗng mà các phần tử của nó gọi là đỉnh của G. ii) E là đa tập hợp gồm các cặp có sắp thứ tự của hai đỉnh. Mỗi phần tử của E được gọi là một cung (cạnh) của G. Ký hiệu uv. Ta nói cung uv đi từ u đến v, cung uv kề với u,v 8
  7. b b a a d c c d 9
  8. Định nghĩa 6. Đa đồ thị có hướng không chứa các cạnh song song gọi là đồ thị có hướng 10
  9.  Cho hai đồ thị G1=(V1,E1) và G2=(V2,E2). Ta nói G2 là đồ thị con của G1 nếu V2  V1 và E2  E1.  Trong trường hợp V1=V2 thì G2 gọi là con bao trùm của G1.
  10. G1, G2, G3 và G4 là các đồ thị con của G, trong đó G2 và G4 là đồ thị con bao trùm của G, còn G5 không phải là đồ thị con của G.
  11.  Đơn đồ thị G’=(V,E’) được gọi là đồ thị bù của đơn đồ thị G=(V,E) nếu G và G’ không có cạnh chung nào (E  E’=) và G  G’là đồ thị đầy đủ.
  12. Bậc của đỉnh  Cho đồ thị vô hướng G = (V,E). Bậc của đỉnh v, ký hiệu deg(v), là số cạnh kề với v, trong đó một khuyên tại một đỉnh được đếm hai lần cho bậc của đỉnh ấy. 15
  13. a Bậc đỉnh a: deg(a) = 2 b c d Bậc đỉnh b: deg(b) = 5 Bậc đỉnh c: deg(c) = 3 Bậc đỉnh d: deg(d) = 2 16
  14. Cho đồ thị có hướng G = (V, E), vV 1) deg-(v):= số cung có đỉnh cuối là v, gọi là bậc vào của v. 2) deg +(v):= số cung có đỉnh đầu là v,gọi là bậc ra của v 3) deg(v):= deg- (v) + deg+(v)  Đỉnh bậc 0 gọi là đỉnh cô lập. Đỉnh bậc 1 gọi là đỉnh treo 17
  15. a b d c e f Bậc của các đỉnh? 18
  16. Bậc đỉnh a: deg-(a)= 1 ; deg+(a)=1 a b Bậc đỉnh b: deg-(b)= 1 ; deg+(b)=3 d c e f Bậc đỉnh c: deg-(c)= 1 ; deg+(c)=2 Bậc đỉnh d: deg-(d)= 0 ; deg+(d)=0 Bậc đỉnh e: deg-(e)= 1 ; deg+(e)=0 Bậc đỉnh f: deg-(f)= 2 ; deg+(f)=0 19
  17. Định lí Cho đồ thị G = (V,E), m là số cạnh (cung) 1) 2m   deg(v) vV 2) Nếu G có hướng thì: m   deg(v)   deg(v) vV vV 3) Số đỉnh bậc lẻ của đồ thị là số chẵn 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2