
CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489
Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 1
TOÁN 11 NHỊ THỨC NEWTON VÀ CÁC BÀI TOÁN LIÊN QUAN
TRUY CẬP https://diendangiaovientoan.vn/tai-lieu-tham-khao-d8.html ĐỂ ĐƯỢC NHIỀU
HƠN
1D2-3
Mục lục
Phần A. CÂU HỎI .......................................................................................................................................................... 2
Dạng 1. Tiếp cận với khai triển nhị thức newton ............................................................................................................. 2
Dạng 2. Tìm hệ số, số hạng trong khai triển nhị thức newton .......................................................................................... 3
Dạng 2.1 Khai triển của 1 biểu thức ............................................................................................................................. 3
Dạng 2.1.1 Bài toán tìm hệ số của số hạng ............................................................................................... 3
Dạng 2.1.2 Bài toán tìm số hạng thứ k ...................................................................................................... 4
Dạng 2.1.3 Bài toán tìm hệ số, số hạng trong khai triển nhị thức có thêm điều kiện n ............................ 5
Dạng 2.1.4 Số hạng không chứa x (số hạng độc lập) ................................................................................ 8
Dạng 2.2 Khai triển của nhiều biểu thức .................................................................................................................... 11
Dạng 2.2.1 Dạng
1 2 ...
n
k
a a a
........................................................................................................... 11
Dạng 2.2.2 Tổng
1 1 2 2 ...
n m h
k k
a b a b a b
......................................................................... 12
Dạng 2.2.3 Tích
1 1
.. . ...
m l
n n
a a b b
........................................................................................... 12
Dạng 2.2.4 Dạng kết hợp tích và tổng ..................................................................................................... 13
Dạng 3. Ứng dụng nhị thức newton để giải toán ............................................................................................................ 13
Phần B. LỜI GIẢI THAM KHẢO ................................................................................................................................. 14
Dạng 1. Tiếp cận với khai triển nhị thức newton ........................................................................................................... 14
Dạng 2. Tìm hệ số, số hạng trong khai triển nhị thức newton ........................................................................................ 16
Dạng 2.1 Khai triển của 1 biểu thức ........................................................................................................................... 16
Dạng 2.1.1 Bài toán tìm hệ số của số hạng ............................................................................................. 16
Dạng 2.1.2 Bài toán tìm số hạng thứ k .................................................................................................... 18
Dạng 2.1.3 Bài toán tìm hệ số, số hạng trong khai triển nhị thức có thêm điều kiện n .......................... 20
Dạng 2.1.4 Số hạng không chứa x (số hạng độc lập) .............................................................................. 27
Dạng 2.2 Khai triển của nhiều biểu thức .................................................................................................................... 31
Dạng 2.2.1 Dạng
1 2 ...
n
k
a a a
........................................................................................................... 31
Dạng 2.2.2 Tổng
1 1 2 2 ...
n m h
k k
a b a b a b
......................................................................... 33
Dạng 2.2.3 Tích
1 1
.. . ...
m l
n n
a a b b
........................................................................................... 35
Dạng 2.2.4 Dạng kết hợp tích và tổng ..................................................................................................... 35
Dạng 3. Ứng dụng nhị thức newton để giải toán ............................................................................................................ 36