Đáp án Đề thi thử Đại học lần 1 môn Toán khối B năm 2014 - THPT Lê Quý Đôn
lượt xem 5
download
"Đáp án Đề thi thử Đại học lần 1 môn Toán khối B năm 2014 - THPT Lê Quý Đôn" đưa ra lời giải chi tiết các câu hỏi có trong "Đề thi thử Đại học lần 1 môn Toán khối B năm 2014 - THPT Lê Quý Đôn", nhằm giúp các bạn dễ dàng ôn luyện và kiểm tra kết quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đáp án Đề thi thử Đại học lần 1 môn Toán khối B năm 2014 - THPT Lê Quý Đôn
- WWW.VNMATH.COM ĐÁP ÁN THANG ĐIỂM THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI B LẦN I NĂM HỌC 2013-2014 Câu NỘI DUNG Điểm I 1.Khi m=1 1 Khảo sát và vẽ đồ thị hàm số y x 3 3 x 2 a)TXĐ:D=R b)Sự biến thiên x 0 0.25 -Chiều biến thiên y ' 3 x 2 6 x y ' 0 x 2 ………………………………………………………………………………………... Hàm số đồng biến trên khoảng (;0) và (2; ) Hàm số nghịch biến trên khoảng (0; 2) 0.25 -Cực trị : Hàm số đạt cực đại tại x 0 ;ycd 0 Hàm số đạt cực tiểu tại x 2 ;y ct 4 -Giới hạn : lim ; lim x x ………………………………………………………………………………………... Bảng biến thiên 0.25 x 0 2 y' + 0 - 0 + y 0 -4 ………………………………………………………………………………………... Đồ thị 0.25
- WWW.VNMATH.COM 1 2:Tìm m để đồ thị hàm số cóđiểm cực đại , điểm cực tiểu và khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc toạ độ O bằng 3 lần khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc toạ độ O TXD: D=R Ta có y ' 3 x 2 6mx 3( m2 1) Đồ thị hàm số có điểm cực đại ,điểm cực tiểu khi và chỉ khi y ' 0 có hai nghiệm 0.25 phân biệt và đổi dấu khi đi qua các nghiệm 3 x 2 6mx 3( m 2 1) 0 có hai nghiệm phân biệt ' 9m 2 9(m 2 1) 9 0 m x m 1 0.25 Vậy m đồ thị hàm số có điểm cực đại ,điểm cực tiểu và y ' 0 x m 1 0.25 Điểm A(m-1;2-2m);B(1+m,-2-2m) lần lượt là điểm cực đại ,điểm cực tiểu của đồ thị hàm số theo giả thiết ta có OB=3 OA OB 2 9OA2 (m+1) 2 (2 2m)2 (m-1)2 (2 2 m) 2 m 2 2 m 5m 2 0 2 m 1 2 m 2 0.25 Vậy với thì đồ thị hàm số cóđiểm cực đại , điểm cực tiểu và khoảng cách từ m 1 2 điểm cực tiểu của đồ thị hàm số đến gốc toạ độ O bằng 3 lần khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc toạ độ O 2 Giải phương trình : 2s inx(cos 2 x sin 2 x) s inx 3 cos 3x (1) 1 phương trình (1) 0.25
- WWW.VNMATH.COM 2 sin x.cos 2 x s inx 3 cos 3x sin 3x s inx s inx 3 cos 3x 1 3 0.25 sin 3x 3 cos 3x 2 sin x sin 3x cos3x s inx 2 2 0.25 cos sin 3x sin cos3x s inx sin(3x ) sin x 3 3 3 3x 3 x k2 x 6 k 0.25 kZ 3x x k2 x k 3 3 2 3.Giải phương trình x 4 6 x 2 x 2 13x 17 1 Điều kiện : 4 x 6 Ta có : x 4 6 x 2 x 2 13 x 17 ( x 4 1) ( 6 x 1) 2 x 2 13 x 15 0 ( x 4 1)( x 4 1) ( 6 x 1)( 6 x 1) 0.25 ( x 5)(2 x 3) 0 x 4 1 6 x 1 x 5 5 x ( x 5)(2 x 3) 0 0.25 x 4 1 6 x 1 x 5 1 1 (2 x 3) 0 0.25 x 4 1 6 x 1 1 1 1 1 Ta có (2 x 3) 0 (2 x 3) x 4 1 6 x 1 x 4 1 6 x 1 1 1 1 Vì 1 x 4;6 và 2 x 3 5 x 4; 6 x 4 1 6 x 1 x 4 1 0.25 Vậy phương trình đã cho có nghiệm duy nhất x= 5 3 4 1 Tính tích phân I ln 2 x( x 2 3) dx 2 Ta có 3 3 3 I ln 2 x( x 2 3) dx ln( x 3 3 x 2)dx ln( x 1) 2 ( x 2)dx 2 2 2 3 3 3 3 0.25 ln( x 1) 2 dx ln( x 2)dx 2 ln( x 1) dx ln( x 2)dx 2 2 2 2 2dx 0.25 3 u 2 ln(x 1) du Xét J 2 ln(x 1) dx Đặt x 1 2 dv dx v x 1 3 3 3 3 J 2(x 1).l n(x-1) 2 2 dx 2(x 1).ln(x-1) 2 2x. 2 4ln 2 2 0.25 2
- WWW.VNMATH.COM 3 dx u ln(x 2) du Xét K ln(x 2) dx Đặt x2 0.25 2 dv dx v x 2 3 3 3 3 K (x 2).l n(x+2) 2 dx (x 2).ln(x+2) 2 x. 2 5ln 5 4 ln 4 1 2 vậy I 5ln 5 4ln 2 3 5 Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D biết 1 AB =2a ; AD=DC=a.(a>0) SA (ABCD) ,góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 45 0 Tính thể tích khối chóp SABCD và khoảng cách từ B tới mặt phẳng (SCD) S H A B D C +Theo giả thiết ta có AD= DC = a .Gọi H là trung điểm của AB HA=HB=a Từ giả thiết ADCH là hình vuông cạnh a .Trong tam giác ABC có CH là trung tuyến 0.25 1 AC BC và CH AB ABC vuông cân tại C vì 2 AC BC a 2 BC AC BC (SAC) BC SC BC SA (SBC) (ABCD) BC BC SC (SBC) 450 là góc giữa (SBC) và (ABCD) +Có SCA BC AC (ABCD) SA (ABCD) 0.25 2 1 3a +Ta có diện tích hình thang ABCD S ABCD ( AB DC ). AD 2 2 +Có tam giác ΔSAC vuông cân tại A ta có SA=AC= AD 2 +DC 2 2 a
- WWW.VNMATH.COM 1 1 3a 2 2 3 +Thể Tích khối chóp SABC là : VS.ABCD SABCD .SA a 2. a 3 3 2 2 0.25 1 3V Ta có VSDCB SBCD .d(B; (SCD)) d(B; (SCD)) SDCB 3 SBCD 1350 nên V 11 2 3 Trong BCD có C SDCB BC.CD.sin1350.SA a 0.25 32 6 2 3 3. a 3V 6 2a 3 a 6 Vậy d(B;(SCD)) SDCB SBCD 1 0 3a 2 3 a.a 2.sin135 2 câu6 Cho x,y là các số thực và thoả mãn x,y >1 .Tìm giá trị lớn nhất của biểu thức 1 ( x3 y 3 ) ( x 2 y 2 ) :P ( x 1)( y 1) Đặt t =x + y điều kiện t > 2 t2 Áp dụng bất đẳng thức 4 xy ( x y ) 2 ta có xy 4 0.25 t 3 t 2 xy (3t 2) t 2 P do 3t-2>0 xy nên ta có xy t 1 4 t2 0.25 t 3 t 2 (3t 2) 4 t2 P t2 t 2 t 1 4 t2 Xét hàm số f (t ) trên (2; ) t2 t 2 4t t 0 (l) có f '(t ) f '(t ) 0 (t 2) 2 t 4 (tm) 0.25 lim f (t) ; lim f (t) x 2 x t 4 2 f'(t) - 0 + 0.25 f(t) 8
- WWW.VNMATH.COM x y 4 x 2 min f (t ) f (4) 8 minP 8 dấu = xảy ra khi và chỉ khi (2; ) xy 4 y 2 TỰ CHỌN A theo chương trình chuẩn 7a 1:Gọi A(a;0) thuộc Ox và B(b;b) thuộc d ta có MA( a 2; 1) MB (b 2; b 1) 0.25 MA MB MB.MA 0 0.25 ABM vuông cân tại M nên 2 2 MA MB MA MB 0.25 (a 2)(b 2) (b 1) 0 2 2 2 vì b=2 không thoả mãn hệ phương tình nên ta có (a 2) 1 (b 2) (b 1) 0.25 b 1 b 1 a2 a 2 b2 b2 . (a 2) 2 1 (b 2) 2 (b 1) 2 ( b 1 2 2 2 ) 1 (b 2) (b 1) b 2 0.5 b 1 a 2 a 2 b2 b 1 2 2 a 4 (b 2) (b 1) (b 2)2 (b 1)2 2 (b 2) b 3 Vậyphương trình đường thẳng : x y 2 0 ; : 3 x y 12 0 2 14 1 n 3 8a Ta có 2 3 (1) dk Cn 3Cn n n N với điều kiện trên phương trình (1) tương đương 4 28 1 0.5 n(n 1) n(n 1)( n 2) n n 2 n 2 7 n 18 0 n 9 kết hợp điều kiện n=9 Với n=9 ta có khai triển (1 3 x)2n (1 3 x)18 Số hạng tỏng quát Tk 1 C18k ( 3) k x k số hạng chứa x 9 khi k =9 Vậy hệ số của x9 trong khai triển là C189 ( 3) 9 9a 3 3 Giải phương trình 3x x 2.3x x 32 x 2 0 (1) 3 3 Ta có 3x x.3x x 32 x 0.25 3 3 3 3 3 (1) 3x x (1 3x x ) 2(1 3x x ) 0 (1 3x x )(3x x 2) 0 x 0 0.25 1 3 x x3 0 x x 0 x 1 3 x 1
- WWW.VNMATH.COM x 0 0.25 Vậy Phương trình đã cho có nghiệm x 1 x 1 0.25 B Theo Chương Trình nâng cao 7b Trong mặt phẳng với hệ toạ độ Oxy cho ABC có đỉnh A 3; 4 , đường phân 1 giác trong của góc A có phương trình x y 1 0 và tâm đường tròn ngoại tiếp ABC là I (1 ;7). Viết phương trình cạnh BC, biết diện tích ABC gấp 4 lần diện tích IBC . + Ta có IA 5 . Phương trình đường tròn ngoại tiếp ABC có dạng C : ( x 1)2 ( y 7)2 25 + Gọi D là giao điểm thứ hai của đường phân giác trong A 0,25 góc A với đường tròn ngoại tiếp ABC . Tọa độ của D là nghiệm của hệ I x y 1 0 D 2;3 2 2 ( x 1) ( y 7) 25 B C 0,25 H K D + Vì AD là phân giác trong của góc A nên D là điểmchính giữa cung nhỏ BC. 0,25 Do đó ID BC hay đường thẳng BC nhận véc tơ DI 3; 4 làm vec tơ pháp tuyến. + Phương trình cạnh BC có dạng 3x 4 y c 0 + Do SABC 4SIBC nên AH 4IK 7c 31 c + Mà AH d A; BC và IK d I ;BC nên 5 5 114 0,25 c 3 7 c 4 31 c c 131 5 Vậy phương trình cạnh BC là : 9 x 12 y 114 0 hoặc 15 x 20 y 131 0 8b Một hộp có 5 viên bi đỏ ,3 viên bi vàng và 4 viên bi xanh .Hỏi có bao nhiêu cách lấy 1 ra 4 viên bi trong đó số bi đỏ lớn hơn số bi vàng Các trường hợp để chọn được 4 viên bi trong đó số bi đỏ lớn hơn số bi vàng là TH1: Cả 4 viên bi được chọn đều là bi đỏ 0,25 số cách là : C54 cách chọn TH2: Trong 4 viên bi được chọn có 1bi đỏ và 3 bi xanh số cách là : C51.C43 cách chọn 0,25 TH3: Trong 4 viên bi được chọn có 3bi đỏ và 1 bi xanh số cách là : C53 .C41 cách chọn TH4: Trong 4 viên bi được chọn có 3bi đỏ và 1 bi vàng 0,25 số cách là : C53 .C31 cách chọn TH5: Trong 4 viên bi được chọn có 2bi đỏ và 2 bi xanh
- WWW.VNMATH.COM số cách là : C52 .C42 cách chọn 0,25 TH6: Trong 4 viên bi được chọn có 2bi đỏ và 1 bi vàng và 1 bi xanh số cách là : C52 .C31.C41 cách chọn Vậy có C54 + C51.C43 + C53 .C41 + C53 .C31 + C52 .C42 + C52 .C31.C41 =275 cách chọn thoả mãn yêu cầu bài toán 9b Giải phương trình log 3 3x 1 .log 3 3x 2 9 3 (1) 1 log 3 (3 x 1).log 3 9(3 x 1) 3 log 3 (3x 1).(log 3 9 log 3 (3x 1)) 3 (1) log 3 (3 x 1).(2 log 3 (3x 1)) 3 0,25 Đặt t log3 (3x 1) t>0 t 1 (1) t (2 t ) 3 t 2 2t 3 0 kết hợp điều kiện ta có t=1 0,25 t 3 (l) với t=1 log 3 (3x 1)=1 3x 1 3 3x 2 x log 3 2 0,25 Vậy phương trình có nghiệm x log3 2 0,25 Trên đây chỉ là một hướng giải Mọi cách giải đúng vẫn cho điểm tối đa
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án đề thi thử Đại học môn Hóa học lần 2, năm 2012-2013
14 p | 192 | 22
-
Đáp án đề thi thử Đại học lần 2 môn Vật lý năm 2014
10 p | 105 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 141 | 9
-
Đáp án Đề thi thử Đại học môn Toán khối A năm 2012-2013 - Huỳnh Đức Khánh
6 p | 104 | 9
-
Đáp án đề thi thử đại học môn Toán khối A, A1, B năm 2014
7 p | 138 | 9
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối B năm 2014 - THPT Ngô Gia Tự
5 p | 90 | 7
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối D năm 2014 - THPT Ngô Gia Tự
5 p | 78 | 7
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối D năm 2014 - THPT Tứ Kỳ
5 p | 75 | 6
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B, D năm 2014 - THPT Quế Võ 1
4 p | 87 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối B, D năm 2014 - THPT Ngô Gia Tự
4 p | 102 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, B năm 2013 - THPT Thuận Thành số 1
4 p | 90 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B năm 2014 - THPT Tứ Kỳ
5 p | 96 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1, B tháng 4/2014
11 p | 82 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A tháng 4/2014
8 p | 81 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A tháng 5/2014
7 p | 80 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 82 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ
4 p | 65 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn