Đáp án Đề thi thử Đại học lần 2 môn Toán khối B năm 2014 - THPT Ngô Gia Tự
lượt xem 7
download
"Đáp án Đề thi thử Đại học lần 2 môn Toán khối B năm 2014 - THPT Ngô Gia Tự" đưa ra lời giải chi tiết các câu hỏi có trong "Đề thi thử Đại học lần 2 môn Toán khối B năm 2014 - THPT Ngô Gia Tự", nhằm giúp các bạn dễ dàng ôn luyện và kiểm tra kết quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đáp án Đề thi thử Đại học lần 2 môn Toán khối B năm 2014 - THPT Ngô Gia Tự
- www.VNMATH.com SỞ GD&ĐT BẮC NINH HD CHẤM THI THỬ ĐẠI HỌC LẦN II NĂM 2014 TRƯỜNG THPT NGÔ GIA TỰ Môn thi: TOÁN; Khối B NGÀY THI 18/01/2014 Thời gian làm bài: 180 phút, không kể thời gian giao đề Câu Ý Nội dung Điểm 1 a) Khảo sát và vẽ đồ thị 1.0 4 2 Khi m 1 , ta có hàm số y x x 2 . Tập xác định : D . 0.25 Sự biến thiên: - Chiều biến thiên: y ' 2 x(2 x 2 1) ; y ' 0 x 0 . - Khoảng đồng biến (0; ) , khoảng nghịch biến (;0) . - Cực trị: Hàm số đạt cực tiểu tại x 0, yCT 2 . 0.25 - Giới hạn: lim và lim . x x - Bảng biến thiên x 0 y’ – 0 + 0.25 y -2 Đồ thị : Đồ thị cắt trục Ox tại (1;0);(1;0) và cắt Oy tại (0; 2) 0.25 b) Tìm m…… 1.0 Gọi điểm cố định mà đồ thị đi qua có tọa độ là: (x 0 ; y 0 ) , ta có 0.25 y 0 x 04 mx 02 m 1 luôn đúng với mọi m. x 2 1 0 0.25 Hay: m (x 02 1) 1 x 04 y 0 0 luôn đúng với mọi m 0 y 0 x 0 1 4 0.25 Khi đó (C m ) luôn luôn đi qua hai điểm cố định là A( 1;0), B (1;0) . Hai tiếp tuyến tại A, B vuông góc nên có 3 5 0.25 y '(1)y (1) 1 (4 2m )(4 2m ) 1 m hoặc m . 2 2
- www.VNMATH.com 3 5 Vậy với m , m thỏa mãn yêu cầu bài toán. 2 2 2 Giải phương trình lượng giác 1.0 Phương trình đã cho trở thành 0.25 2cos6x+2cos4x- 3cos2x = sin2x+ 3 2 4cos5xcosx = 2sinxcosx + 2 3 cos x 0.25 cos x=0 2cos5x =sinx+ 3 cos x cos x 0 cos5x=cos(x- ) 6 0.25 x 2 k k x 0.25 24 2 x k 2 42 7 3 Giải bất phương trình: x 2 x 2 x 2 3x 2 1.0 2 Điều kiện: x . 0.25 3 Bất phương trình trở thành: x 2 3x 2 (x 2 x 2) 0 2 x 2 x 1 0 (1) 0.25 x 2 3x 2 2 2 Đặt f (x ) x 1 với x . x 2 3x 2 3 0.25 Ta có f '(x ) 2 x 2 3x 2 ' 1 0, x 2 . 2 3 x 2 3x 2 2 5 3 Do đó f (x ) f 0. 3 3 2 0.25 Khi đó từ (1) ta có x 2 0 x 2 . 3 Kết hợp với điều kiện ta có nghiệm của bất phương trình: x 2 . 2 4 1.0 Tìm hệ số của x10 trong khai triển Ta có C20n 1 C21n 1 ... C22nn11 (1 1) 2 n 1 22 n 1 . 0.25 Lại có: C20n 1 C22nn11 ; C21n 1 C22nn1 ; C22n 1 C22nn11 ;...; C2nn 1 C2nn11 0.25
- www.VNMATH.com 22 n 1 2 Do đó: C20n 1 C21n 1 ... C2nn 1 22 n 1 220 1 n 10 2 0.25 10 Mà: (2 3x )10 C10k 210 k 3k x k k 0 0.25 Hệ số của x10 tương ứng k 10 Vậy hệ số của x10 là: C1010 310 310 . 5 Hình học không gian 1.0 * Tính thể tích: 1 Gọi H = AC BD SH (ABCD) & BH = BD. 3 Kẻ HE AB AB (SHE) nên góc giữa (SAB) và (ABCD) là: 600 SHE 1 2a 2a 3 Mà HE = AD = SH = . 3 3 3 3 1 VSABCD = .SH.SABCD = a 3 . 3 3 S K A O D I E H B C * Tính khoảng cách: Gọi O là trung điểm AD, AC BO I . Khi đó ABCO là hình vuông cạnh a . 0.25 1 ACD có trung tuyến SO = AD 2 CD AC CD (SAC) và BO // CD Hay CD // (SBO) và BO (SAC). d(CD ; SB) = d(CD ; (SBO)) = d(C ; (SBO)). 0.25 Theo tính chất trọng tâm tam giác BCO ta có 1 a 2 5a 2 IH IC IS IH 2 HS 2 . 0.25 3 6 6
- www.VNMATH.com Kẻ CK SI mà CK BO CK (SBO) d(C;(SBO)) = CK. Trong tam giác SIC có: 0.25 1 1 SH .IC 2a 3 SH .IC 2a 3 S SIC SH .IC SI .CK CK . 2 2 SI 5 SI 5 2a 3 Vậy: d (CD; SB) . 5 6 Chứng minh 1.0 Ta có: 0.25 3 3 1 1 1 2a b ab bc 3 abc 2a b a.4b b.4c 3 a.4b.16c 4 4 2 2 4 3 a 4b b 4c a 4b 16c 0.5 2a b 4 4 4 12 28(a b c) 7 12 0.25 16 4 1 Dấu bằng xảy ra khi và chỉ khi: a ; b ; c 7 7 7 7 1.0 Tìm tọa độ đỉnh C và D Ta có: AB 1;2 AB 5 . Phương trình của AB là: 2 x y 2 0 . I d : y x I t ; t . I là trung điểm của AC và BD nên ta có: 0.25 C 2t 1; 2t , D 2t; 2t 2 . 4 Mặt khác: S ABCD AB.CH 4 (CH: chiều cao) CH . 5 0.25 4 5 8 8 2 | 6t 4 | 4 t 3 C 3 ; 3 , D 3 ; 3 Ngoài ra: d C ; AB CH 5 5 0.25 t 0 C 1;0 , D 0; 2 5 8 8 2 Vậy tọa độ của C và D là C ; , D ; hoặc C 1; 0 , D 0; 2 . 3 3 3 3 0.25 8 1.0 Viết phương trình đường thẳng d….. Theo giả thiết: (C ) có tâm O(0; 0) , bán kính R 13 (C ') có tâm O '(6; 0) , bán kính R ' 5
- www.VNMATH.com Tọa độ các giao điểm của (C ) và (C ') là nghiệm của hệ phương trình: x 2 y 2 13 x 2 y 2 13 0.25 ( x 6)2 y 2 25 x 2 y 2 12 x 11 0 x 2 0.5 y 3 A(2;3) (vì y 0) A y 3 Gọi H, H’ lần lượt là giao điểm của đường thẳng d và các đường tròn (C ) , (C ') thỏa AH AH ' , với H không trùng H’. Gọi M, M’ lần lượt là trung điểm của AH, AH’. Vì A là trung điểm của đoạn thẳng HH’ nên A là trung điểm của đoạn thẳng MM’. Gọi I là trung điểm của đoạn thẳng OO’ I (3; 0) . Ta có IA // OM. Mà OM (d ) nên IA (d ) 0.25 (d ) có vtpt IA (1;3) và qua A(2;3) Vậy phương trình đường thẳng d : 1( x 2) 3( y 3) 0 x 3 y 7 0 . 9 Giải phương trình 1.0 3 2 sin 2 x sin 2 x 1sin 2 x 2 9 4.9 31 2 sin x 13 9 2 2 36 27 3 0.25 9sin x sin 2 x 13 2 sin 2 x sin2 x . 9 9 9 2 Đặt t 9 ,1 t 9 , ta có phương trình : sin x 39 27 t 13 0 t 1; t 3; t 9 . t t2 + Với t 0 sin 2 x 0 x k . 0.5 + Với t 1 sin 2 x 0 cos x 0 x k . 2 1 1 k + Với t sin 2 x cos 2x 0 x . 0.25 2 2 4 2 k Vậy nghiệm phương trình là: x ( k ) . 4 Tổng : 10.00 Các cách giải khác đúng cho điểm tương đương từng phần.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án đề thi thử Đại học môn Hóa học lần 2, năm 2012-2013
14 p | 192 | 22
-
Đáp án đề thi thử Đại học lần 2 môn Vật lý năm 2014
10 p | 105 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 141 | 9
-
Đáp án Đề thi thử Đại học môn Toán khối A năm 2012-2013 - Huỳnh Đức Khánh
6 p | 104 | 9
-
Đáp án đề thi thử đại học môn Toán khối A, A1, B năm 2014
7 p | 138 | 9
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối D năm 2014 - THPT Ngô Gia Tự
5 p | 78 | 7
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối D năm 2014 - THPT Tứ Kỳ
5 p | 75 | 6
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B, D năm 2014 - THPT Quế Võ 1
4 p | 87 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối B, D năm 2014 - THPT Ngô Gia Tự
4 p | 102 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ
4 p | 65 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, B năm 2013 - THPT Thuận Thành số 1
4 p | 90 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A, A1, B năm 2014 - THPT Tứ Kỳ
5 p | 96 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1, B tháng 4/2014
11 p | 82 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A tháng 4/2014
8 p | 81 | 5
-
Đáp án Đề thi thử Đại học lần 1 môn Toán khối A tháng 5/2014
7 p | 80 | 5
-
Đáp án Đề thi thử Đại học lần 2 môn Toán khối A tháng 5/2014
7 p | 82 | 5
-
Đáp án đề thi thử đại học năm 2012 môn: Toán - Đề số 06
9 p | 62 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn