ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối A
lượt xem 15
download
Tham khảo tài liệu 'đề ôn tập số 1 thi đại học, cao đẳng môn thi: toán, khối a', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối A
- ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối A Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm)Cho hàm số y x 3 3mx 2 m 1x 1 (1), m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = -1. 2. Tìm các giá trị của m để tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ x = -1 đi qua điểm A(1;2) Câu II (2 điểm) 1. Giải phương trình tgx = cotgx + 4cos2 2x. (2 x 1) 2 (x R). 2. Giải phương trình 2 x 1 + 3 2 x = 2 Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 5 x 6 y 6 z 13 0 x3 y 3 z 3 d1: và d 2 : x 6 y 6 z 7 0. 2 2 1 1. Chứng minh rằng d 1 và d 2 cắt nhau. 2. Gọi I là giao điểm của d 1 và d 2 . Tìm tọa độ các điểm A,B lần lượt thuộc d 1 , d 2 sao cho 41 tam giác IAB cân tại I và có diện tích bằng . 42 3 xdx Câu IV (2 điểm) 1.Tính tích phân I = . 3 2x 2 1 2 sin( x ) 4 2. Giải phương trình e =tgx. PHẦN RIÊNG Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm) 1. Cho tập hợp E = 0,1,2,3,4,5,7. Hỏi có bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau được lập từ các chữ số của E? 2. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC các đường cao kẻ từ đỉnh B và đường phân giác trong của góc A lần lượt có phương trình là 3x + 4y + 10=0 và x - y + 1=0; điểm M(0;2) thuộc đường thẳng AB đồng thời cách điểm C một khoảng bằng 2 . Tìm tọa độ các đỉnh cuả tam giác ABC. Câu V.b. Theo chương trình phân ban (2 điểm) 2x 3 0. 1. Giải bất phương trình log 1 log 2 x 1 3 2. Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại đỉnh B, BA = BC = 2a, hình chiếu vuông góc của S trên mặt phẳng đáy (ABC) là trung điểm E của AB và SE = 2a. Gọi I, J lần lượt là trung điểm của EC, SC; M là điểm di động trên tia đối của tia BA sao ˆ cho góc E CM = (
- ĐÁP ÁN – THANG ĐIỂM Môn thi: TOÁN, khối A Câu Nội dung Điểm 2,00 I Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) 1 Với m = -1 hàm số trở thành y = x3 – 3x2 + 1 • Tập xác định: R 0,25 x 0 • Sự biến thiên: y’ = 3x2 – 6x; y’ = 0 x 2 • yCĐ = y(0) = 1, yCT = y(2) = -3 0,25 • Bảng biến thiên: - + x 0 2 0,25 y’ + 0 - 0 + + y 1 - -3 • Đồ thị: y 1 2 0,25 x O -3 Tìm các giá trị của tham số m …(1,00 điểm) 2 Gọi M là điểm thuộc đồ thị hàm số (1) có hoành độ x = -1, suy ra M(-1; 2m - 1) 0,25 Ta có y’ = 3x2 + 6mx + (m+1); y’(-1) = 4 – 5m. Tiếp tuyến d của đồ thị hàm số 0,5 đã cho tại M(-1; 2m – 1) có phương trình là: y = ( 4 -5m)(x + 1) + 2m – 1 0,25 5 Tiếp tuyến d đi qua A(1, 2) khi và chỉ khi 2 = (4 – 5m)2 + 2m – 1 m = 8 2,00 II Giải phương trình lượng giác(1,00 điểm) 1 Điều kiện: sin x. cos x 0. Phương trình đã cho tương đương với sin x cos x 2cos 2x tgx – cotgx = 4cos2 2x = 4cos2 2x + 4cos2 2x = 0 cos x sin x sin 2x
- 1 2cos 2x = 0 cos 2x(1 + sin 4x) = 0 cos 2x sin 2x 0,50 cos 2 x 0 x k . 4 2 sin 4 x 1 x k . 8 2 Đối chiếu điều kiện suy ra nghiệm của phương trình đã cho là x k va x k với k Z 4 2 8 2 Giải phương trình …(1,00 điểm) 2 1 3 Điều kiện: x ; . 2 2 0,50 Ta có 2 4 2 2 x 13 2 x 4 2 x 1 3 2 x 2 (1). 2x 1 3 2 x 2 0,25 (2x - 1) Mặt khác, (2). - 2 £ 2x - 1 £ 2 Þ (2x - 1)2 £ 4 Þ £2 2 Từ (1) và (2) suy ra phương trình đã cho tương đương với 2 x 1 3 2x 2 1 3 x hoặc x . 0,25 2 x 1 4 2 2 2 1 3 Đối chiếu điều kiện ta được nghiệm của phương trình là x và x 2 2 2,00 III Chứng minh d1 cắt d2 (1,00 điểm) 1 x 3 y 3 z 3 2 2 1 0,50 Tọa độ giao điểm I của d1 và d2 thỏa mãn hệ 5 x 6 y 6 z 13 0 x 6 y 6z 7 0 Giải hệ ta được I(1; 1; 2). 0,50 Tìm tọa độ…(1,00 điểm) 2 Véctơ chỉ phương của d1 là u 1 = (2; 2; 1). 6 6 6 5 5 6 Ta có 0,25 6 6 ; 6 1 ; 1 6 = (-72; -36; -24). Suy ra u 2 = (6; 3; 2) là một vectơ chỉ phương của d2 0,25 u1.u 2 41 20 Gọi α là góc giữa d1 và d2 ta có cosα = = sin α = . 21 u1 . u 2 21 41 2 41 12 1 IA sin α = IA2 sin α = Ta có S IAB = IA = IA = IB = 1. 42 42 2 2 1 0,25 Vì A thuộc d1 nên tọa độ của A(1 + 2t; 1 + 2t; 2 + t) IA = 3|t| = 1 t = 3
- 5 5 7 1 1 5 A , , hoặc A , , 3 3 3 3 3 3 1 Vì B thuộc d2 nên tọa độ của B(1 + 6k; 1 + 3k; 2 + 2k) IB = 7|k| = 1 t = 7 0,25 13 10 16 1 4 12 B , , hoặc A , , 7 7 7 7 7 7 2,00 IV Tính tích phân…(1,00 điểm) 1 3 xdx I= 3 2x 2 1 2 0,50 t3 2 3t 2 dt 3 Đặt t = 2x 2 x = dx = 2 2 1 x=- t = 1; x = 3 t = 2 2 t 3 2 3t 2dt . 2 2 0,50 5 2 3 t 4 2 t dt = 3 t t 2 2 = 12 Suy ra I = 2 4 45 1 t 5 1 1 Giải phương trình…(1,00 điểm) 2 Điều kiện: cosx≠0. Dễ thấy sinx=0 không thỏa mã n phương trình 2 sin x 2 cos x 2 sin x cos x 2 2 sin x e e 2 Phương trình đã cho tương đương với e cos x sin x cos x 0,50 (1). u sin x . Ta có u , v 1;1; u.v 0 . Đặt v cos x 2u 2v 2 2 e e Từ (1) ta có phương trình . u v 2x 2 e , với x 1;0 0;1 . Xét hàm số y f ( x ) x 2x 2 x 2 2 1 e 2x 2 2x 2 e y' 0 suy ra hàm số nghịch biến trên các 2 2x2 x khoảng (-1;0) và (0;1). 0,50 Ta thấy u,v cùng dấu nên u, v cùng thuộc một khoảng (-1;0) hoặc (0;1). Từ giả thiết f(u) = f(v) u = v tgx = 1 x k . 4 Đối chiếu với điều kiện ta được nghiệm của phương trình đã cho là x k với k Z . 4
- 2,00 V.a Có bao nhiêu số tự nhiên…(1,00 điểm) 1 Số tự nhiên chẵn gồm 4 chữ số khác nhau của E có dạng: abcd , trong đó a 0, d 0,2,4 . 3 Xét d=0. Khi đó các số có 3 chữ số abc bằng A6 120 . 0,50 Xét d = 2 (hoặc d = 4), khi đó a có 5 cách chọn, ứng với mỗi cách chọn a ta có 5 cách chọn b, ứng với mỗi cách chọn hai chữ số a, b ta có 4 cách chọn chữ số c. Vậy có tất cả 5.5.4 = 100 số. Vậy có 120 + 100.2 = 320 số. Tìm tọa độ các đỉnh…(1,00 điểm) 2 Gọi d1 ,d2 lần lượt là đường cao kẻ từ đỉnh B và đường phân giác trong của góc A Gọi M’(a; b) là điểm đối xứng của M qua d2 và I là trung điểm của MM’. a b 2 Ta có MM ' a; b 2, I ; . Vectơ chỉ phương của d2 là u 1;1 . 0,25 2 2 a b 2 0 MM ' .u 0 a 1 Ta có hệ: a b 2 b 1 2 2 1 0 I d 2 Khi đó M’(1 ; 1) thuộc đường thẳng AC. Mặt khác vectơ chỉ phương v 4;3 của đường cao d1 chính là vectơ pháp tuyến của đường thẳng AC. Do đó phương 0,25 trình đường thẳng AC là 4(x - 1) – 3(y - 1) = 0 4x – 3y – 1 = 0. ìx - y + 1 = 0 ï x = 4 .Vậy A (4;5) ì ï ï ï A d 2 AC xác định bởi hệ í 4x - 3y - 1 = 0 Û íy = 5 ï ï ï ï î î Phương trình đường thẳng AB: x0 y2 x y2 3 x 4 y 8 0. 40 5 2 4 3 0,25 ìx = - 3 ï ì 3x + 4y + 10 = 0 ï 1 ï ï ï B d1 AB xác định bởi hệ Vậy í 3x - 4y + 8 = 0 Û í y = - 1 . B (- 3; - ) ï ï 4 ï î ï 4 ï î 4c 1 Đường thẳng AC: 4x – 3y – 1 = 0, do đó C c; . 3 C1 1;1 c 1 2 4c 1 31 33 2 MC 2 c 2 2 c 31 C2 ; . 3 0,25 25 25 25 Ta nhận thấy AC1 và AC2 cùng chiều. 1 Kết luận: A4;5, B 3; , C 1;1. 4 1 31 33 Hoặc A4;5, B 3; , C , . 4 25 25 V.b Giải bất phương trình logarit …(1,00 điểm) 1 Bất phương trình đã cho tương đương với 0,50 2x 3 2x 3 0 log 2 11 2 x 1 x 1
- 2x 3 x 2 x 2 x 1 1 0 x 1 0 x 1 x 2. 0,50 2x 3 2 0 1 0 x 1 x 1 x 1 Nghiệm của bất phương trình là x < - 2. Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án qui định. Hướng dẫn: Trung tâm Luyện thi Vĩnh Viễn.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG - Môn thi: Sinh vật
8 p | 277 | 84
-
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn TOÁN, khối D
6 p | 395 | 49
-
ĐỀ ÔN TẬP SỐ 4 THI ĐẠI HỌC, CAO ĐẲNG Môn Vật lý
7 p | 168 | 34
-
ĐỀ ÔN TẬP SỐ 2 THI ĐẠI HỌC, CAO ĐẲNG Môn TOÁN, khối A
6 p | 196 | 28
-
ĐỀ ÔN TẬP SỐ 3 THI ĐẠI HỌC, CAO ĐẲNG Môn Vật lý
8 p | 139 | 25
-
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn TOÁN, khối B
6 p | 242 | 23
-
ĐỀ ÔN TẬP SỐ 2 THI ĐẠI HỌC, CAO ĐẲNG Môn Vật lý
9 p | 136 | 17
-
ĐỀ ÔN TẬP SỐ 2 THI ĐẠI HỌC, CAO ĐẲNG Môn TOÁN, khối B
6 p | 124 | 15
-
ĐỀ ÔN TẬP SỐ 2 THI ĐẠI HỌC, CAO ĐẲNG Môn TOÁN, khối D
6 p | 153 | 14
-
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: Sinh học
8 p | 97 | 13
-
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối B
6 p | 98 | 13
-
ĐỀ ÔN TẬP SỐ 1 THI ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối D
6 p | 115 | 12
-
Đề ôn tập HK 1 môn Toán 7 năm 2017-2018 - THPT Xuân Trường
2 p | 63 | 3
-
Đề ôn tập tuần 1 tháng 3 môn Toán 11 năm 2019-2020 - Trường THPT chuyên Hà Nội - Amsterdam
14 p | 53 | 3
-
Đề ôn tập tuần 1 tháng 3 môn Toán 12 năm 2019-2020 - Trường THPT chuyên Hà Nội - Amsterdam
7 p | 30 | 3
-
Đề cương ôn tập HK 1 môn Toán lớp 11 năm 2014-2015 - THPT Thuận Thành Số 1
12 p | 50 | 2
-
Đề cương ôn tập HK 1 môn Toán lớp 10 năm 2014-2015 - THPT Thuận Thành Số 1
8 p | 58 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn