intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THAM KHẢO MÔN TOÁN ÔN THI ĐẠI HỌC NĂM 2010 - 6

Chia sẻ: Vo Anh Hoang | Ngày: | Loại File: DOC | Số trang:8

171
lượt xem
53
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo dành cho giáo viên, học sinh đang trong giai đoạn ôn thi đại học chuyên môn toán học - ĐỀ THAM KHẢO MÔN TOÁN ÔN THI ĐẠI HỌC NĂM 2010 - 6.

Chủ đề:
Lưu

Nội dung Text: ĐỀ THAM KHẢO MÔN TOÁN ÔN THI ĐẠI HỌC NĂM 2010 - 6

  1. ĐỀ THI TUYÊN SINH ĐẠI HỌC - NĂM HỌC 2009 - 2010 ̉ ĐỀ THAM KHAO 6 ̉ Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số : y = x 3 − 3mx 2 + 3(m 2 − 1) x − (m 2 − 1) (1) 1. Với m = 0 , khảo sát sự biến thiên và vẽ đồ thị hàm số (1) . 2. Tìm m để đồ thị hàm số (1) cắt trục Ox tại ba điểm phân biệt có hoành độ dương. Câu II (2,0 điểm) cos 2 x. ( cos x − 1) = 2 ( 1 + sin x ) . 3. Giải phương trình sin x + cos x 7 − x 2 + x x + 5 = 3 − 2 x −sx 2 4. Giải phương trình (x − ) 3 x −3 +3. dx . Câu III (1,0 điểm). Tính tích phân x +1 + x + 3 0 Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên các cạnh AB, AC sao cho ( DMN ) ⊥ ( ABC ) . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứng minh rằng: x + y = 3xy. Câu V (1,0 điểm). Cho x, y, z 0 0 thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu thức x 3 + y 3 + 16 z 3 P= ( x + y + z) 3 II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). A. Theo chương trình Chuẩn: Câu VI.a (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng x +1 y −1 z − 2 x−2 y+2 z = = = = d1: , d2: −2 2 3 1 1 5 Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2. Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i)n , biết rằng n ∈ N thỏa mãn phương trình log4(n – 3) + log4(n + 9) = 3 B. Theo chương trình Nâng cao: Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG. x − 3 y + 2 z +1 = = 2. Trong không gian toạ độ cho đường thẳng d: và mặt phẳng (P): x + y + z + 2 = 0. −1 2 1 Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới ∆ bằng 42 . 1 x −log 1 ( y − x ) − log 4 y = 1 ( x, y − + ) Câu VII.b (1,0 điểm). Giải hệ phương trình − 4 −x 2 + y 2 = 25 + 1
  2. -------------------Hết ------------------- SƠ LƯỢC ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ THI KHẢO SÁT LẦN 2 - 2010 Đáp án gồm 06 trang Nội dung Điể Câu m I 2,0 1 1,0 1 Với m =1 thì y = x + 1 + x−2 0.25 a) Tập xác định: D = = \ { 2} b) Sự biến thiên: =x = 1 x2 − 4x + 3 1 y ' =1− = , y ' =0 0 =x = 3 . ( x − 2) ( x − 2) 2 2 = 0.25 lim y = −m , lim y = +m , lim y = +m ; lim y = −i , x − 2+ x 2− x y −m x y +m + lim [ y − ( x + 1)] = 0 ; lim [ y − ( x + 1) ] = 0 x y +y −) x x Suy ra đồ thị hàm số có tiệm cận đứng x = 2, tiệm cận xiên y = x – 1. Bảng biến thiên - +∞ x 1 2 3 ∞ – y’ + + 0 – 0 +∞ +∞ 1 y 0.25 - - 3 ∞ biến trên mỗi khoảng ( −1 ;1) , ( 3; +3 ) ; hàm số nghịch biến trên ∞ Hàm số đồng mỗi khoảng ( 1; 2 ) , ( 2;3) Cực trị: Hàm số đạt giá trị cực trị: yCĐ = 1 tại x = 1; yCT = 3 tại x = 3. c) Đồ thị: 0.25 2
  3. 2 1.0 m Với x ớ 2 ta có y’ = 1- ; ( x − 2) 2 0.25 Hàm số có cực đại và cực tiểu ể phương trình (x – 2)2 – m = 0 (1) có hai nghiệm phân biệt khác 2 � m > 0 x1 = 2 + m � y1 = 2 + m + 2 m Với m > 0 phương trình (1) có hai nghiệm là: 0.25 x2 = 2 − m � y2 = 2 + m − 2 m Hai điểm cực trị của đồ thị hàm số là A( 2 − m ; 2 + m − 2 m ) ; B( 2 + m; 2 + m + 2 m ) 0.25 Khoảng cách từ A và B tới d bằng nhau nên ta có phương trình: 2−m− m = 2−m+ m =m = 0 == =m = 2 0.25 Đối chiếu điều kiện thì m = 2 thoả mãn bài toán Vậy ycbt ⇔ m = 2. II 2.0 cos x. ( cos x − 1) 2 = 2 ( 1 + sin x ) . Giải phương trình 1 1.0 sin x + cos x ĐK: sin x +x x cos 0 0.25 Khi đó PT � ( 1 − sin x ) ( cos x − 1) = 2 ( 1 + sin x ) ( sin x + cos x ) 2 � ( 1 + sin x ) ( 1 + cos x + sin x + sin x.cos x ) = 0 0.25 � ( 1 + sin x ) ( 1 + cos x ) ( 1 + sin x ) = 0 =sin x = −1 == (thoả mãn điều kiện) 0.25 =cos x = −1 π π =x = − 2 + k 2π ( k , m k Z) = = =x = π + m2π 0.25 π ( k , m k Z) + k 2π và x = π + m2π Vậy phương trình đã cho có nghiệm là: x = − 2 2 1.0 7 − x 2 + x x + 5 = 3 − 2 x −o 2 Giải phương trình: (x − ) x x 3 − 2 x −x 2 0 x − PT − − 0.25 −7 − x + x x + 5 = 3 − 2 x − x 2 2 x 3 − 2 x −x 2 0 0.25 x − −− +x x + 5 = −2( x + 2) 3
  4. x x −2 x 1 . 3 −−x x < 0 −2 − −− ۹ ۹x 0 +( x + 1) ( x − 16 ) = 0 0.25 2 ۹ x+2 + x + 5 = −2. + x � x = −1 0.25 Vậy phương trình đã cho có một nghiệm x = - 1. 3 x −3 1.0 +3. dx . Tính tích phân III x +1 + x + 3 0 � = 0 � u =1 x x + 1 � u 2 − 1 = x � 2udu = dx ; đổi cận: � Đặt u = 0.25 � = 3�u = 2 x 3 2 2 2 x−3 2u 3 − 8u 1 0.25 Ta có: � dx = � du = �u − 6)du + 6� du (2 u + 3u + 2 u +1 2 0 3 x +1 + x + 3 1 1 1 2 ( ) 1 + 6 ln u + 1 1 0.25 2 = u 2 − 6u 3 0.25 = −3 + 6 ln 2 IV 1.0 D Dựng DH ⊥ MN = H Do ( DMN ) ⊥ ( ABC ) � DH ⊥ ( ABC ) mà D. ABC là tứ diện đều nên H là tâm tam giác đều ABC . B C 0.25 N H M A 2 �3� 6 Trong tam giác vuông DHA: DH = DA − AH = 1 − � � = 2 2 2 �3 � 3 �� 0.25 1 3 Diện tích tam giác AMN là S AMN = AM . AN .sin 600 = xy 2 4 1 2 Thể tích tứ diện D. AMN là V = S AMN .DH = xy 0.25 3 12 1 1 1 Ta có: S AMN = S AMH + S AMH � xy.sin 600 = x. AH .sin 300 + y. AH .sin 300 2 2 2 0.25 ⇔ x + y = 3xy. V 1.0 ( x + y) 3 (biến đổi tương đương) � ... � ( x − y ) ( x + y ) �0 2 Trước hết ta có: x 3 +yy 3 0.25 4 = a. Khi đó 4 P + ( x + y) ( a − z) 3 3 + 64 z 3 + 64 z 3 0.25 = ( 1 − t ) + 64t 3 3 Đặt x + y + z = 3 3 a a 4
  5. z (với t = , 0 t t 1) 1 a Xét hàm số f(t) = (1 – t)3 + 64t3 với t 0 [ 0;1] . Có 1 f '(t ) = 3 � t 2 − ( 1 − t ) � f '(t ) = 0 � t = � 0;1] [ 2 0.25 64 , � � 9 Lập bảng biến thiên 64 � GTNN của P là 16 đạt được khi x = y = 4z > 0 � Minf ( t ) = 0.25 81 81 tM 0;1] [ VI.a 2.0 1 1.0 Do B là giao của AB và BD nên toạ độ của B là nghiệm của hệ: 21 y =x = 5 x − 2 y +1 = 0 − − � 13 � 21 0.25 �� � B� ; � � � − 7 y + 14 = 0 x � = 13 � 5� 5 y = 5 Lại có: Tứ giác ABCD là hình chữ nhr t nên góc giữa AC và AB bằng góc giữa AB và ậ uuu r uuu r uuu BD, kí hiệu nAB (1; −2); nBD (1; −7); nAC ( a; b) (với a2+ b2 > 0) lần lượt là VTPT của các uuu uuu rr uuu uuu rr ( ) ( ) đường thẳng AB, BD, AC. Khi đó ta có: cos nAB , nBD = cos nAC , nAB 0.25 =a = −b 3 a + b � 7 a + 8ab + b = 0 � = � a − 2b = 2 2 2 2 �= −b a 2 = 7 ọ b = - 1. Khi đó Phương trình AC: x – y – 1 = 0, - Với a = - b. Chọn a = 1 A = AB ∩ AC nên toạ độ điểm A là nghiệm của hệ: � − y −1 = 0 �=3 x x �� � A(3; 2) � � − 2 y +1 = 0 � = 2 x y Gọi I là tâm hình chữ nhật thì I = AC ∩ BD nên toạ độ I là nghiệm của hệ: 7 y =x = 2 0.25 x − y −1 = 0 − − � 5� 7 �� �I � ; � � � − 7 y + 14 = 0 x �=5 � 2� 2 y = 2 � 12 � 14 Do I là trung điểm của AC và BD nên toạ độ C ( 4;3) ; D � ; � � 5� 5 - Với b = - 7a (loại vì AC không cắt BD) 0.25 2 1.0 � = −1 + 2t � = 2+m x x � � Phương trình tham số của d1 và d2 là: d1 : � = 1 + 3t ; d 2 : � = −2 + 5m y y 0.25 � = 2+t � = −2 m z z � � Giả sử d cắt d1 tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d2 tại N(2 + m ; - 2 + 5m ; - 2m) 0.25 uuuu r M MN (3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t). 5
  6. +3 + m − 2t = 2k uuuu r uur uu r + −−3 + 5m − 3t = −k có nghiệm Do d ⊥ (P) có VTPT nP (2; −1; −5) nên ∃k : MN =N n p k 0.25 −−2 − 2m − t = −5k − =m = 1 Giải hệ tìm được = =t = 1 =x = 1 + 2t = 0.25 Khi đó điểm M(1; 4; 3) ể Phương trình d: = y = 4 − t thoả mãn bài toán =z = 3 − 5t = Tìm phần thực của số phức z = (1 + i)n , biết rằng n ∈ N thỏa mãn phương trình VII.a 1.0 log4(n – 3) + log4(n + 9) = 3 nn n N Điều kiện: n >n > 3 0.25 Phương trình log4(n – 3) + log4(n + 9) = 3 ⇔ log4(n – 3)(n + 9) = 3 (thoả mãn) =n = 7 == ⇔ (n – 3)(n + 9) = 4 ⇔ n + 6n – 91 = 0 3 2 (không thoả mãn) =n = −13 0.25 Vậy n = 7. 3 Khi đó z = (1 + i)n = (1 + i)7 = ( 1 + i ) . � + i ) �= ( 1 + i ) .(2i )3 = (1 + i ).( −8i ) = 8 − 8i (1 � 2 0.25 � Vậy phần thực của số phức z là 8. 0.25 VI.b 2.0 1 1.0 Giả sử B ( xB ; yB ) �d1 � xB = − yB − 5; C ( xC ; yC ) �d 2 � xC = −2 yC + 7 +xB + xC + 2 = 6 0.25 Vì G là trọng tâm nên ta có hệ: + + yB + yC + 3 = 0 Từ các phương trình trên ta có: B(-1;-4) ; C(5;1) 0.25 uuu r uuu r Ta có BG (3; 4) � VTPT nBG (4; −3) nên phương trình BG: 4x – 3y – 8 = 0 0.25 9 81 phương trình đường tròn: (x – 5)2 +(y – 1)2 = Bán kính R = d(C; BG) = 0.25 5 25 2 1.0 Ta có phương trình tham số của d là: =x = 3 + 2t =x = 3 + 2t = y = −2 + t = = = y = −2 + t ⇒ toạ độ điểm M là nghiệm của hệ = (tham số t) 0.25 =z = −1 − t =z = −1 − t = =x + y + z + 2 = 0 + � M (1; −3;0) uu r uu r Lại có VTPT của(P) là nP (1;1;1) , VTCP của d là ud (2;1; −1) . 0.25 uu r uu uu rr Vì ∆ nằm trong (P) và vuông góc với d nên VTCP u∆ = �d , nP � (2; −3;1) = u � � 6
  7. uuuu r Gọi N(x; y; z) là hình chiếu vuông góc của M trên ∆ , khi đó MN ( x − 1; y + 3; z ) . uu r uuuu r Ta có MN vuông góc với u∆ nên ta có phương trình: 2x – 3y + z – 11 = 0 xx + y + z + 2 = 0 + Lại có N ạ (P) và MN = 42 ta có hệ: −2 x − 3 y + z − 11 = 0 −( x − 1) 2 + ( y + 3) 2 + z 2 = 42 − Giải hệ ta tìm được hai điểm N(5; - 2; - 5) và N(- 3; - 4; 5) 0.25 x−5 y+2 z +5 Nếu N(5; -2; -5) ta có pt ∆ : = = −3 2 1 0.25 x+3 y+4 z −5 Nếu N(-3; -4; 5) ta có pt ∆ : = = −3 2 1 1 VII.b 1.0 x −log 1 ( y − x ) − log 4 y = 1 ( x, y − + ) Giải hệ phương trình − 4 −x 2 + y 2 = 25 + −y − x > 0 Điều kiện: − 0.25 >y > 0 y−x � −x 1 1 y � � � 4 ( y − x ) + log 4 y = −1 � 4 y = −1 � y = 4 log log Hệ phương trình � � �� �� 0.25 � 2 + y 2 = 25 � 2 + y 2 = 25 � 2 + y 2 = 25 x x x � � � =x = 3 y � = 3y � = 3y x x � � �2 �� 2 � � 2 25 0.25 � + y = 25 � y + y = 25 � = 2 2 y x 9 � 10 x �15 5� (không thỏa mãn đk) =( x; y ) = � ; � � 10 10 � � � � � 15 5� 0.25 (không thỏa mãn đk) =( x; y ) = �− ;− � � � 10 10 � Vậy hệ phương trình đã cho vô nghiệm. Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được điểm từng phần như đáp án quy định. 7
  8. 8
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2