Đề thi HSG cấp trường môn Toán lớp 9 - THCS Vinh Quang
lượt xem 30
download
Hãy tham khảo Đề thi HSG cấp trường môn Toán lớp 9 năm 2012 - 2013 (Trường THCS Vinh Quang) để giúp các em biết thêm cấu trúc đề thi như thế nào, rèn luyện kỹ năng giải bài tập và có thêm tư liệu tham khảo chuẩn bị cho kì thi sắp tới đạt điểm tốt hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi HSG cấp trường môn Toán lớp 9 - THCS Vinh Quang
- TRƯỜNG THCS VINH QUANG ĐỀ THI HSG CẤP TRƯỜNG Tổ: Tự nhiên Môn: TOÁN - Lớp 9 Đề số 1 Thời gian 90 phút (Không kể giao đề) Câu 1: (2 điểm) Các biểu thức sau có thể âm được không? Có thể bằng 0 được không? A = 4x4 – 4x3 + x2 B = 2x2 – 2x + 1 Câu 2: (2 điểm) Cho hai số có tổng bằng và hiệu bằng tìm tích hai số ấy? Câu 3: (2 điểm) Cho A = . a) Rút gọn biểu thức A b) Tìm giá trị của x để A> -6 Câu 4: (3 điểm) Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là hình chiếu của H trên AB, N là hình chiếu của H trên AC. a) Chứng minh rằng AM.AB = AN.AC b) Tam giác vuông ABC có thêm điều kiện gì thì tứ giác AMHN có diện tích lớn nhất? Biết BC = a (Không đổi). Câu 5: (1 điểm) Một người đo chiều cao AB bằng cách ngắm từ C (Hình vẽ). Tính độ dài AB biết CH = 1,5m, = 450, = 150. TRƯỜNG THCS VINH QUANG ĐỀ THI HSG CẤP TRƯỜNG Tổ: Tự nhiên Môn: TOÁN - Lớp 9 Đề số 2 Thời gian 90 phút (Không kể giao đề) Câu 1: (1 điểm) Tìm chỗ sai trong bài toán Ngụy biện sau: a2 – 2ab +b2 = b2 – 2ab + a2 (a – b)2 = (b – a)2 a–b=b–a 2a = 2b a=b Câu 2: (2 điểm) Cho hai số không âm a và b. Gọi trung bình nhân của hai số là . Chứng minh rằng trung bình cộng của hai số không nhỏ hơn trung bình nhân? (BĐT CôSi) x + x 2 - 4x x - x 2 - 4x Câu 3: (3 điểm) Cho biểu thức A = 2 - 2 . x - x - 4x x + x - 4x a) Tìm điều kiện của x để A có nghĩa. b) Rút gọn biểu thức A. c) Tìm giá trị của x để A < Câu 4: (2 điểm) Cho tam giác nhọn ABC, BC = a, AC = b, AB = c. Chứng minh rằng = = . Câu 5: (2 điểm) Cho hình bình hành ABCD có AB = a, AD = b (a>b), = α < 900. Các tia phân giác của các góc A, B, C, D cắt nhau tạo thành một tứ giác. a) Tứ giác đó là hình gì? b) Tính diện tích tứ giác đó theo a, b, α.
- HƯỚNG DẪN CHẤM ĐỀ 1 Câu Đáp án Điể m 1 A = 4x4 – 4x3 + x2 = x2(4x2- 4x + 1) = x2(2x-1)2 1 1a A = x2(2x-1)2≥ 0 ∀ x∈ R A = 0 ⇔ 2x - 1 = 0 ⇔ x = 1b B = 2x2 – 2x + 1 = x2 + x2 - 2x + 1 = x2 + (x - 1)2 > 0 ∀ x∈ R 1 2 Gọi hai số là a và b ta có a + b = và a - b = 0,5 Vậy a = = ; b = = ⇒ a.b = . = = = 1 1 0,5 3 A = . Điều kiện 0 < x ≠ 1 3a Rút gọn: 1 Đặt = a ta có A= . = . = = = = -2a Vậy A = -2 3b A = -6 ⇔ x = 1 1 A > -6 ⇔ < 3 ⇔ x < 9 Vậy để A > - 6 thì 4 0,5 H 4a Trong tam giác vuông AHB ta có: 0,5 AM.AB = AH2 (1) Trong tam giác vuông AHC ta có: AN.AC = AH2 (2) 0,5 Từ (1)&(2) ⇒ AM.AB = AN.AC 4b SAMHN = AM.AN = . = = 0,5 Gọi I là trung điểm của BC ta có: AH ≤ AI = = nên SAMHN ≤ = Do đó Max SAMHN = ⇔ H ≡ I ⇔ ∆ABC vuông cân tại A 0,5 0,5 5
- Ta có: KC = KB.Cotg 150 = 1,5.3,732 = 5,6 (m). 1 KA = KC = 5,6 (m). AB = KA + KB = 5,6 + 1,5 = 7,1 (m) TRƯỜNG THCS VINH QUANG ĐỀ THI HSG CẤP TRƯỜNG Tổ: Tự nhiên Môn: TOÁN - Lớp 9 Đề số 2 Thời gian 90 phút (Không kể giao đề) Câu 1: (1 điểm) Tìm chỗ sai trong bài toán Ngụy biện sau: a2 – 2ab +b2 = b2 – 2ab + a2 (a – b)2 = (b – a)2 a–b=b–a 2a = 2b a=b
- Câu 2: (2 điểm) Cho hai số không âm a và b. Gọi trung bình nhân của hai số là . Chứng minh rằng trung bình cộng của hai số không nhỏ hơn trung bình nhân? (BĐT CôSi) x + x 2 - 4x x - x 2 - 4x Câu 3: (3 điểm) Cho biểu thức A = - . x - x 2 - 4x x + x 2 - 4x a) Tìm điều kiện của x để A có nghĩa. b) Rút gọn biểu thức A. c) Tìm giá trị của x để A < Câu 4: (2 điểm) Cho tam giác nhọn ABC, BC = a, AC = b, AB = c. Chứng minh rằng = = . Câu 5: (2 điểm) Cho hình bình hành ABCD có AB = a, AD = b (a>b), = α < 900. Các tia phân giác của các góc A, B, C, D cắt nhau tạo thành một tứ giác. a) Tứ giác đó là hình gì? b) Tính diện tích tứ giác đó theo a, b, α. Câu Đáp án Điể m 1 Sai lầm trong bài là: (a – b)2 = (b – a)2 0.5 = Vì thế không thể suy ra a-b = b-a 0.5 2 Ta có BĐT: = (1) Với a ≥ 0; b ≥ 0 0.5 (1) ⇔ 2≥ ab ⇔ ≥ ab ⇔ a2+2ab+b2≥ 4ab ⇔ a2- 2ab + b2≥ 0⇔(a+b)2≥ 0 (Đúng với mọi a, b) Đẳng thức xảy ra khi a = b. 0.5 0.5 0.5
- 3 x + x 2 - 4x x - x 2 - 4x A= - x - x 2 - 4x x + x 2 - 4x 3a Điều kiện để A có nghĩa: 0.25 * x -4x≥ 0⇔x(x-4)≥ 0⇔ ⇔ ⇔ x≥ 4 (1) 2 * Xét x2 = 2 ⇔ x2 = x2 - 4x ⇔ 4x = 0 ⇔ x = 0 Do đó với x≠0 thì x≠ ± (2) 0.25 (1)(2) ⇒ với x≥ 4 thì A có nghĩa. 0.25 0.25 3b Rút gọn: 1 A= = = 3c Giải Bpt: < 1 ⇔ x2-4x-5
- EFGH có 4 góc vuông vậy EFGH là hình chữ nhật. 5b DMBN là h.b.h, HD = HM, FB = FN nên HF//MB 1 HF = MB = AB - AM = a-b Tương tự EG//AD. Tính được: = = α, EI = = Kẻ EK ⊥ HF ta có EK = EI.sinα = Do đó S EFGH = 2S∆EFH = HF.EK = (a-b)2.sinα
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tổng hợp đề thi HSG cấp trường các môn lớp 9 năm 2017-2018
42 p | 734 | 52
-
Đề thi HSG cấp trường môn Sinh học lớp 9 năm 2017-2018 - THCS Ngô Quyền
4 p | 1134 | 47
-
Đề thi HSG cấp trường môn Hóa học lớp 9 năm 2017-2018 - THCS Ngô Quyền
4 p | 1011 | 41
-
Đề thi HSG cấp trường môn Toán lớp 9 năm 2017-2018 - THCS Ngô Quyền
6 p | 830 | 41
-
Đề thi HSG cấp trường lớp 11 môn Địa lý năm 2016 - THPT DTNT Tỉnh
5 p | 440 | 28
-
Đề thi HSG cấp trường lớp 9 môn Vật lí năm 2017-2018 - THCS Ngô Quyền
4 p | 476 | 25
-
Đề thi HSG cấp trường lớp 9 môn Địa lí năm 2017-2018 - THCS Ngô Quyền
6 p | 239 | 18
-
Đề thi HSG cấp trường môn Tin học lớp 9 năm 2017-2018 - THCS Ngô Quyền
3 p | 157 | 14
-
Đề thi HSG cấp trường môn Lịch sử lớp 9 năm 2017-2018 - THCS Ngô Quyền
6 p | 217 | 8
-
Đề thi HSG cấp trường lớp 12 môn Địa lý năm 2016 - THPT DTNT Tỉnh
5 p | 130 | 7
-
Đề thi HSG cấp trường môn Giải Toán trên máy tính cầm tay năm 2017-2018 - THCS Ngô Quyền
8 p | 130 | 7
-
Đề thi HSG cấp trường môn Ngữ Văn năm 2021-2022 có đáp án - Trường THPT Chuyên Nguyễn Trãi
6 p | 20 | 5
-
Đề thi HSG cấp trường môn Tiếng Anh năm 2021-2022 - Trường THPT chuyên Nguyễn Trãi
11 p | 28 | 5
-
Đề thi HSG cấp trường môn Tiếng Nga năm 2021-2022 - Trường THPT Chuyên Nguyễn Trãi
14 p | 29 | 5
-
Đề thi HSG cấp trường môn Vật lí năm 2021-2022 có đáp án - Trường THPT chuyên Nguyễn Trãi
8 p | 36 | 5
-
Đề thi HSG cấp trường môn Lịch sử lớp 12 năm 2021-2022 có đáp án - Trường THPT Chuyên Nguyễn Trãi
8 p | 31 | 4
-
Đề thi HSG cấp trường môn Toán lớp 9 năm 2021-2022 - Sở GD&ĐT Thanh Hóa
1 p | 57 | 4
-
Đề thi HSG cấp trường môn Toán lớp 12 năm 2021-2022 có đáp án - Trường THPT chuyên Nguyễn Trãi
5 p | 32 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn