Hard Disk Drive Servo Systems- P7

Chia sẻ: Thanh Cong | Ngày: | Loại File: PDF | Số trang:20

lượt xem

Hard Disk Drive Servo Systems- P7

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'hard disk drive servo systems- p7', công nghệ thông tin, phần cứng phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:

Nội dung Text: Hard Disk Drive Servo Systems- P7

  1. 11 A Benchmark Problem Before ending this book, we post in this chapter a typical HDD servo control design problem. The problem has been tackled in the previous chapters using several design methods, such as PID, RPT, CNF, PTOS and MSC control. We feel that it can serve as an interesting and excellent benchmark example for testing other linear and nonlinear control techniques. We recall that the complete dynamics model of a Maxtor (Model 51536U3) hard drive VCM actuator can be depicted as in Figure 11.1: Nominal plant Resonance modes Noise Figure 11.1. Block diagram of the dynamical model of the hard drive VCM actuator The nominal plant of the HDD VCM actuator is characterized by the following second-order system: sat (11.1) and (11.2) where the control input is limited within V and is an unknown input dis- turbance with mV. For simplicity and for simulation purpose, we assume that the unknown disturbance mV. The measurement output available for
  2. 292 11 A Benchmark Problem control, i.e. (in l um), is the measured displacement of the VCM R/W head and is given by Noise (11.3) where the transfer functions of the resonance modes are given by (11.4) with represents the variation of the resonance modes of the actual actuators whose resonant dynamics change from time to time and also from disk to disk in a batch of million drives. Note that many new hard drives in the market nowadays might have resonance modes at much higher frequencies (such as those for the IBM microdrives studied in Chapter 9). But, structurewise, they are almost the same. The output disturbance (in lum), which is mainly the repeatable runouts, is given by (11.5) and the measurement noise is assumed to be a zero-mean Gaussian white noise with a variance (um) . l The problem is to design a controller such that when it is applied to the VCM actuator system, the resulting closed-loop system is asymptotically stable and the actual displacement of the actuator, i.e. , tracks a reference um. The overall l design has to meet the following specifications: 1. the overshoot of the actual actuator output is less than 5%; 2. the mean of the steady-state error is zero; 3. the gain margin and phase margin of the overall design are, respectively ,greater than 6 dB and ; and 4. the maximum peaks of the sensitivity and complementary sensitivity functions are less than 6 dB. The results of Chapter 6 show that the 5% settling times of our design using the CNF control technique are, respectively, 0.80 ms in simulation and 0.85 ms in actual hardware implementation. We note that the simulation result can be further improved if we do not consider actual hardware constraints in our design. For example, the
  3. 11 A Benchmark Problem 293 CNF control law given below meets all design specifications and achieves a 5% settling time of 0.68 ms. It is obtained by using the toolkit of [55] under the option of the pole-placement method with a damping ratio of and a natural frequency of 2800 rad/sec together with a diagonal matrix diag . The dynamic equation of the control law is given by sat (11.6) (11.7) where (11.8) and (11.9) with being given as in Equation 6.9. The simulation results obtained with given in Figures 11.2 to 11.4 show that all the design specifications have been achieved. In particular, the resulting 5% settling time is 0.68 ms, the gain margin is 7.85 dB and the phase margin is 44.7 , and finally, the maximum values of the sensitivity and complementary sensitivity functions are less than 5 dB. The overall control system can still produce a satisfac- tory result and satisfy all the design specifications by varying the resonance modes with the value of changing from to . Nonetheless, we invite interested readers to challenge our design. Noting that for the track-following case, i.e. when um, the control signal is far below its l saturation level. Because of the bandwidth constraint of the overall system, it is not possible (and not necessary) to utilize the full scale of the control input to the actuator in the track-following stage. However, in the track-seeking case or equivalently by setting a larger target reference, say um, the very problem can serve as a l good testbed for control techniques developed for systems with actuator saturation. Interested readers are referred to Chapter 7 for more information on track seeking of HDD servo systems.
  4. 294 11 A Benchmark Problem 1 R/W head displacement (μm) 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 0.15 Control signal to VCM (V) 0.1 0.05 0 −0.05 −0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (ms) (a) and for the system without output disturbance and noise 1 R/W head displacement (μm) 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 0.15 Control signal to VCM (V) 0.1 0.05 0 −0.05 −0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (ms) (b) and for the system with output disturbance and noise Figure 11.2. Output responses and control signals of the CNF control system
  5. 11 A Benchmark Problem 295 150 100 50 Magnitude (dB) 0 −50 −100 −150 −200 0 1 2 3 4 5 10 10 10 10 10 10 Frequency (Hz) −100 −200 Phase (deg) −300 −400 −500 −600 0 1 2 3 4 5 10 10 10 10 10 10 Frequency (Hz) (a) Bode plot 3 0 dB 2 dB 2 −2 dB 4 dB −4 dB 1 6 dB −6 dB 10 dB −10 dB Imaginary axis 0 −1 −2 −3 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 Real axis (b) Nyquist plot Figure 11.3. Bode and Nyquist plots of the CNF control system
  6. 296 11 A Benchmark Problem 20 0 −20 −40 −60 Magnitude (dB) −80 −100 Sensitivity function Complementary sensitivity function −120 −140 −160 −180 0 1 2 3 4 5 10 10 10 10 10 10 Frequency (Hz) Figure 11.4. Sensitivity and complementary sensitivity functions with the CNF control
  7. References 1. Franklin GF, Powell JD, Workman ML. Digital control of dynamic systems. 3rd edn Reading (MA): Addison-Wesley; 1998. 2. Fujimoto H, Hori Y, Yarnaguchi T, Nakagawa S. Proposal of seeking control of hard disk drives based on perfect tracking control using multirate feedforward control. Proc 6th Int Workshop Adv Motion Contr; Nagoya, Japan; 2000. p. 74–9. 3. Goh TB, Li Z, Chen BM, Lee TH, Huang T. Design and implementation of a hard disk drive servo system using robust and perfect tracking approach. IEEE Trans Contr Syst Technol 2001; 9:221–33. 4. Gu Y, Tomizuka M. Digital redesign and multi-rate control for motion control – a gen- eral approach and application to hard disk drive servo system. Proc 6th Int Workshop Adv Motion Contr; Nagoya, Japan; 2000. p. 246–51. 5. Hara S, Hara T, Yi L, Tomizuka M. Two degree-of-freedom controllers for hard disk drives with novel reference signal generation. Proc American Contr Conf; San Diego, CA; 1999. p. 4132–6. 6. Huang Y, Messner WC, Steele J. Feed-forward algorithms for time-optimal settling of hard disk drive servo systems. Proc 23rd Int Conf Ind Electron Contr Instrum; New Orleans, LA; 1997. p. 52–7. 7. Ho HT. Fast bang-bang servo control. IEEE Trans Magn 1997; 33:4522–7. 8. Ishikawa J, Tomizuka M. A novel add-on compensator for cancellation of pivot nonlin- earities in hard disk drives. IEEE Trans on Magn 1998; 34:1895–7. 9. Iwashiro M, Yatsu M, Suzuki H. Time optimal track-to-track seek control by model following deadbeat control. IEEE Trans Magn 1999; 35:904–9. 10. Pao LY, Franklin GF. Proximate time-optimal control of third-order servomechanisms. IEEE Trans Automat Contr 1993; 38:560–80. 11. Patten WN, Wu HC, White L. A minimum time seek controller for a disk drive. IEEE Trans Magn 1995; 31:2380–7. 12. Takakura S. Design of a tracking system using -delay two-degree-of-freedom control and its application to hard disk drives. Proc 1999 IEEE Int Conf Contr Appl; Kohala Coast, HI; 1999. p. 170–5. 13. Wang L, Yuan L, Chen BM, Lee TH. Modeling and control of a dual actuator servo system for hard disk drives. Proc 1998 Int Conf Mechatron Technol; Hsinchu, Taiwan; 1998. p. 533–8. 14. Weerasooriya S, Low TS, Mamun AA. Design of a time optimal variable structure con- troller for a disk drive actuator. Proc Int Conf Ind Electron Contr Instrum; Hawaii; 1993. p. 2161–5.
  8. 298 References 15. Yamaguchi T, Soyama Y, Hosokawa H, Tsuneta K, Hirai H. Improvement of settling response of disk drive head positioning servo using mode switching control with initial value compensation. IEEE Trans Magn 1996; 32:1767–72. 16. Zhang DQ, Guo GX. Discrete-time sliding mode proximate time optimal seek control of hard disk drives. IEE Proc Contr Theory Appl 2000; 147:440–6. 17. Chang JK, Ho HT. LQG/LTR frequency loop shaping to improve TMR budget. IEEE Trans Magn 1999; 35:2280–82. 18. Hanselmann H, Engelke A. LQG-control of a highly resonant disk drive head position- ing actuator. IEEE Trans Ind Electron 1988; 35:100–4. 19. Weerasooriya S, Phan DT. Discrete-time LQG/LTR design and modeling of a disk drive actuator tracking servo system. IEEE Trans Ind Electron 1995; 42:240–7. 20. Chen BM, Lee TH, Hang CC, Guo Y, Weerasooriya S. An almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Trans Contr Syst Technol 1997; 7:160–74. 21. Hirata M, Atsumi T, Murase A, Nonami K. Following control of a hard disk drive by using sampled-data control. Proc 1999 IEEE Int Conf Contr Appl; Kohala Coast, HI; 1999. p. 182-6. 22. Li Y, Tomizuka M. Two degree-of-freedom control with adaptive robust control for hard disk servo systems. IEEE/ASME Trans Mechatron 1999; 4:17–24. 23. Hirata M, Liu KZ, Mita T, Yamaguchi T. Head positioning control of a hard disk drive using theory. Proc 31st IEEE Conf Dec Contr; Tucson, AZ; 1992. p. 2460–1. 24. Kim BK, Chung WK, Lee HS, Choi HT, Suh IH, Chang YH. Robust time optimal controller design for hard disk drives. IEEE Trans Magn 1999; 35:3598–607. 25. Teo YT, Tay TT. Application of the optimal regulation strategy to a hard disk servo system. IEEE Trans Contr Syst Technol 1996; 4:467–72. 26. Du CL, Xie LH, Teoh JN, Guo GX. An improved mixed control design for hard disk drives. IEEE Trans Contr Syst Technol 2005; 13:832–9. 27. Chen R, Guo G, Huang T, Low TS. Adaptive multirate control for embedded HDD servo systems. Proc 24th Int Conf Ind Electron Contr Instrum; Aachen, Germany; 1998. p. 1716–20. 28. McCormick J, Horowitz R. A direct adaptive control scheme for disk file servos. Proc 1993 American Contr Conf; San Francisco, CA; 1993. p. 346–51. 29. Weerasooriya S, Low TS. Adaptive sliding mode control of a disk drive actuator. Proc Asia-Pacific Workshop Adv Motion Contr; Singapore, 1993. p. 177–82. 30. Workman ML. Adaptive proximate time optimal servomechanisms [PhD diss]. Stanford University; 1987. 31. Internet websites: www.storagereview.com; www.pcguide.com; www.storage.ibm.com; www.mkdata.dk; 2001. 32. Porter J. Disk drives’ evolution. Presented at 100th Ann Conf Magn Rec Info Stor; Santa Clara, CA; 1998. 33. Mamun AA. Servo engineering. Lecture Notes; Dept of Electrical & Computer Engi- neering, National University of Singapore; 2000. 34. Zhang JL. Electronic computer magnetic storing devices. Beijing: Military Industry Publishing House; 1981 (in Chinese). 35. Li Q, Hong OE, Hui Z, Mannan MA, Weerasooriya S, Ann MY, Chen SX, Wood R. Analysis of the dynamics of 3.5 hard disk drive actuators. Technical Report. Data Storage Institute (Singapore); 1997. 36. Chang JK, Weerasooriya S, Ho HT. Improved TMR through a frequency shaped servo design. Proc 23rd Int Conf Ind Electron Contr Instrum; New Orleans, LA; 1997. p. 47– 51.
  9. References 299 37. Li Z, Guo G, Chen BM, Lee TH. Optimal control design to achieve highest track-per- inch in hard disk drives. J Inform Stor Proc Syst 2001; 3:27–41. 38. Sacks AH, Bodson M, Messner W. Advanced methods for repeatable runout compen- sation. IEEE Trans Magn 1995; 31:1031–6. 39. Bodson M, Sacks A, Khosla P. Harmonic generation in adaptive feedforward cancella- tion schemes. IEEE Trans Automat Contr 1994; 39:1939–44. 40. Guo L, Tomizuka M. High speed and high precision motion control with an optimal hybrid feedforward controller. IEEE/ASME Trans Mechatron 1997; 2:110–22. 41. Kempf C, Messner W, Tomizuka M, Horowitz R. A comparison of four discrete-time repetitive control algorithms. IEEE Contr Syst Mag 1993; 13:48–54. 42. Guo L. A new disturbance rejection scheme for hard disk drive control. Proc American Contr Conf; Philadelphia, PA; 1998. p. 1553–7. 43. Weerasooriya S. Learning and compensation for repeatable runout of a disk drive servo using a recurrent neural network. Technical Report; Magnetics Technology Center, Na- tional University of Singapore; 1995. 44. Jamg G, Kim D, Oh JE. New frequency domain method of nonrepeatable runout mea- surement in a hard disk drive spindle motor. IEEE Trans Magn 1999; 35:833–8. 45. Ohmi T. Non-repeatable runout of ball-bearing spindle-motor for 2.5 HDD. IEEE Trans Magn 1996; 32:1715–20. 46. Abramovitch D, Hurst T, Henze D. An overview of the PES Pareto method for decom- posing baseline noise sources in hard disk position error signals. IEEE Trans Magn 1998; 34:17–23. 47. Zeng S, Lin RM, Xu LM. Novel method for minimizing track seeking residual vibra- tions of hard disk drives. IEEE Trans Magn 2001; 37:1146–56. 48. Mah YA, Lin H, Li QH. Design of a high bandwidth moving-coil actuator with force couple actuation. IEEE Trans Magn 1999; 35:874–8. 49. McAllister JS. The effect of disk platter resonances on track misregistration in 3.5 disk drives. IEEE Trans Magn 1996; 32:1762–6. 50. Hanselmann H, Mortix W. High-bandwidth control of the head positioning mechanism in a winchester disk drive. IEEE Contr Syst Mag 1987; 7:15–9. 51. Guo G. Lecture notes in servo engineering. Dept of Electrical and Computer Engineer- ing, National University of Singapore; 1998. 52. Weaver PA, Ehrlich RM. The use of multirate notch filters in embedded servo disk drives. Proc American Contr Conf; San Francisco, CA; 1993. p. 4156–60. 53. Lin Z, Chen BM, Liu X. Linear systems toolkit. Technical Report, Dept of Electrical and Computer Engineering, University of Virginia, Charlottesville (VA); 2004. 54. Cheng G, Chen BM, Peng K, Lee TH. A Matlab toolkit for composite nonlinear feed- back control. Proc 8th Int Conf Contr Automat Robot Vision; Kunming, China; 2004. p. 878–83. 55. Cheng G, Chen BM, Peng K, Lee TH. A Matlab toolkit for composite nonlinear feed- back control. Available online at http://hdd.ece.nus.edu.sg/˜bmchen/. 56. Chen BM, Lee TH, Venkataramanan V. Hard disk drive servo systems. New York (NY): Springer; 2002. 57. Ljung L. System identification: theory for the user. Englewood Cliffs (NJ): Prentice Hall; 1987. 58. Sinha NK, Kuszta B. Modeling and identification of dynamic systems. New York (NY): Van Nostrand Reinhold Company; 1983. 59. Eykhoff P. System identification – parameter and state estimation. New York (NY): John Wiley; 1981.
  10. 300 References 60. Hsia TC. System identification. Lexington (MA): Lexington Books; 1977. 61. Sage AP, Melsa JL. System identification. New York (NY): Academic Press; 1971. 62. Dammers D, Binet P, Pelz G, Vobkarper LM. Motor modeling based on physical effect models. Proc 2001 IEEE Int Workshop on Behav Model Simulation; Santa Rosa, CA; 2001. p. 78–83. 63. Dubi A. Monte Carlo applications in systems engineering. New York (NY): John Wiley; 2000. 64. Evans M, Swartz T. Approximating integrals via Monte Carlo and deterministic meth- ods. London: Oxford University Press; 2000. 65. Mikhailov GA. Parametric estimates by the Monte Carlo method. Utrecht, The Nether- lands: V.S.P. International Science; 1999. 66. Rake H. Step response and frequency response methods. Automatica 1980; 16:519–26. 67. Eykhoff P. Trends and progress in system identification. New York (NY): Pergamon Press; 1981. 68. Chen J, Gu G. Control oriented system identification: an approach. New York (NY): John Wiley & Sons; 2000. 69. Gong JQ, Guo L, Lee HS, Yao B. Modeling and cancellation of pivot nonlinearity in hard disk drives IEEE Trans Magn 2002; 38:3560–5. 70. Liu X, Chen BM, Lin Z. On the problem of general structural assignments of linear systems through sensor/actuator selection. Automatica 2003; 39:233–41. 71. Chen BM, Lin Z, Shamash Y. Linear systems theory: a structural decomposition ap- proach. Boston: Birkh¨ ser; 2004. a 72. Sannuti P, Saberi A. A special coordinate basis of multivariable linear systems – Finite and infinite zero structure, squaring down and decoupling. Int J Contr 1987; 45:1655– 704. 73. Saberi A, Sannuti P. Squaring down of non-strictly proper systems. Int J Contr 1990; 51:621–9. 74. Chen BM. Robust and Control. London: Springer; 2000. 75. Rosenbrock HH. State-space and Multivariable Theory. New York (NY): John Wiley; 1970. 76. MacFarlane AGJ, Karcanias N. Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex variable theory. Int J Contr 1976; 24:33–74. 77. Commault C, Dion JM. Structure at infinity of linear multivariable systems: a geometric approach. IEEE Trans Automat Contr 1982; 27:693–6. 78. Pugh AC, Ratcliffe PA. On the zeros and poles of a rational matrix. Int J Contr 1979; 30:213–27. 79. Verghese G. Infinite frequency behavior in generalized dynamical systems [PhD diss]. Stanford University; 1978. 80. Owens DH. Invariant zeros of multivariable systems: a geometric analysis. Int J Contr 1978; 28:187–98. 81. Morse AS. Structural invariants of linear multivariable systems. SIAM J Contr 1973; 11:446–65. 82. Moylan P. Stable inversion of linear systems. IEEE Trans Automat Contr 1977; 22:74– 8. 83. Scherer C. -optimization without assumptions on finite or infinite zeros. SIAM J Contr Optimiz 1992; 30:143–66. 84. Ziegler JG, Nichols NB. Optimum settings for automatic controllers. Trans ASME 1942; 64:759–68. 85. Ziegler JG, Nichols NB. Process lags in automatic control circuits. Trans ASME 1943; 65:433–44.
  11. References 301 86. Franklin GF, Powell JD, Emami-Naeini A. Feedback control of dynamic systems. 3rd edn Reading (MA): Addison-Wesley; 1994. 87. Anderson BDO, Moore JB. Optimal control: linear quadratic methods. Englewood Cliffs (NJ): Prentice Hall; 1989. 88. Fleming WH, Rishel RW. Deterministic and stochastic optimal control. New York (NY): Springer-Verlag; 1975. 89. Kwakernaak H, Sivan R. Linear optimal control systems. New York (NY): John Wiley; 1972. 90. Saberi A, Sannuti P, Chen BM. optimal control. London: Prentice Hall; 1995. 91. Doyle J, Glover K, Khargonekar PP, Francis BA. State space solutions to standard and control problems. IEEE Trans Automat Contr 1989; 34:831–47. 92. Chen BM, Saberi A, Sannuti P, Shamash Y. Construction and parameterization of all static and dynamic -optimal state feedback solutions, optimal fixed modes and fixed decoupling zeros. IEEE Trans Automat Contr 1993; 38:248–61. 93. Zhou K, Khargonekar P. An algebraic Riccati equation approach to -optimization. Syst Contr Lett 1988; 11:85–91. 94. Chen BM, Saberi A, Bingulac S, Sannuti P. Loop transfer recovery for non-strictly proper plants. Contr Theory Adv Technol 1990; 6:573–94. 95. Zames G. Feedback and optimal sensitivity: Model reference transformations, mul- tiplicative seminorms, and approximate inverses. IEEE Trans Automat Contr 1981; 26:301–20. 96. Limebeer DJN, Anderson BDO. An interpolation theory approach to controller degree bounds. Linear Algebra Appl 1988; 98:347–86. 97. Doyle JC. Lecture notes in advances in multivariable control. ONR-Honeywell Work- shop; 1984. 98. Francis BA. A course in control theory. Berlin: Springer; 1987. 99. Glover K. All optimal Hankel-norm approximations of linear multivariable systems and their error bounds. Int J Contr 1984; 39:1115–93. 100. Kwakernaak H. A polynomial approach to minimax frequency domain optimization of multivariable feedback systems. Int J Contr 1986; 41:117–56. 101. Kimura H. Chain-scattering approach to -control. Boston: Birkh¨ user; 1997. a 102. Zhou K, Doyle J, Glover K. Robust and optimal control. Englewood Cliffs (NJ): Pren- tice Hall; 1996. 103. Basar T, Bernhard P. ¸ optimal control and related minimax design problems: a dy- namic game approach. 2nd edn Boston: Birkh¨ user; 1995. a 104. Willems JC. Almost invariant subspaces: an approach to high gain feedback design – part I: almost controlled invariant subspaces. IEEE Trans Automat Contr 1981; 26:235– 52. 105. Willems JC. Almost invariant subspaces: an approach to high gain feedback design – part II: almost conditionally invariant subspaces. IEEE Trans Automat Contr 1982; 27:1071–85. 106. Liu K, Chen BM, Lin Z. On the problem of robust and perfect tracking for linear systems with external disturbances. Int J Contr 2001; 74:158–74. 107. Chen BM, Lin Z, Liu K. Robust and perfect tracking of discrete-time systems. Auto- matica 2002; 38:293–9. 108. Lewis FL. Applied optimal control and estimation. Englewood Cliffs (NJ): Prentice Hall; 1992. 109. Athans M. A tutorial on LQG/LTR methods. Proc American Contr Conf; Seattle, WA; 1986. p. 1289–96.
  12. 302 References 110. Chen BM. Theory of loop transfer recovery for multivarible linear systems [PhD diss]. Pullman (WA): Washington State University; 1991. 111. Chen BM, Saberi A, Sannuti P. A new stable compensator design for exact and approx- imate loop transfer recovery. Automatica 1991; 27:257–80. 112. Doyle JC, Stein G. Multivariable feedback design: concepts for a classical/modern syn- thesis. IEEE Trans Automat Contr 1981; 26:4–16. 113. Goodman GC. The LQG/LTR method and discrete-time control systems. Technical re- port. MIT (MA): Report No.: LIDS-TH-1392; 1984. 114. Kwakernaak H. Optimal low sensitivity linear feedback systems. Automatica 1969; 5:279–85. 115. Matson CL, Maybeck PS. On an assumed convergence result in the LQG/LTR tech- nique. Proc 26th IEEE Conf Dec Contr; Los Angeles, CA; 1987. p. 951–2. 116. Niemann HH, Sogaard-Andersen P, Stoustrup J. Loop Transfer Recovery: Analysis and Design for General Observer Architecture. Int J Contr 1991; 53:1177–203. 117. Saberi A, Chen BM, Sannuti P. Loop transfer recovery: analysis and design. London: Springer; 1993. 118. Stein G, Athans M. The LQG/LTR procedure for multivariable feedback control design. IEEE Tran Automat Contr 1987; 32:105–14. 119. Zhang Z, Freudenberg JS. Loop transfer recovery for nonminimum phase plants. IEEE Trans Automat Contr 1990; 35:547–53. 120. Chen BM, Saberi A, Ly U. Closed loop transfer recovery with observer based con- trollers: analysis. in Contr Dynam Syst (ed. Leondes CT). San Diego (CA): Academic Press; 1992; 51:247–93. 121. Chen BM, Saberi A, Ly U. Closed loop transfer recovery with observer based con- trollers: design. in Contr Dynam Syst (ed. Leondes CT). San Diego (CA): Academic Press; 1992; 56:295–348. 122. Chen BM, Saberi A, Berg MC, Ly U. Closed loop transfer recovery for discrete time systems. in Contr Dynam Syst (ed. Leondes CT). San Diego (CA): Academic Press; 1993; 56:443–81. 123. Hu T, Lin Z. Control systems with actuator saturation: analysis and design. Boston: Birkh¨ user; 2001. a 124. Kirk DE. Optimal control theory. Englewood Cliffs (NJ): Prentice Hall; 1970. 125. Venkataramanan V, Chen BM, Lee TH, Guo G. A new approach to the design of mode switching control in hard disk drive servo systems. Contr Eng Prac 2002; 10:925–39. 126. Itkis U. Control systems of variable structure. New York (NY): Wiley; 1976. 127. Yamaguchi T, Numasato H, Hirai H. A mode-switching control for motion con- trol and its application to disk drives: Design of optimal mode-switching conditions. IEEE/ASME Trans Mechatron 1998; 3:202–9. 128. Salle JL, Lefschetz S. Stability by Liapunov’s direct method. New York (NY): Aca- demic Press; 1961. 129. LaSalle J. Stability by Liapunov’s direct method with applications. New York (NY): Academic Press; 1961. 130. Lin Z, Pachter M, Banda S. Toward improvement of tracking performance – nonlinear feedback for linear systems. Int J Contr 1998; 70:1–11. 131. Turner MC, Postlethwaite I, Walker DJ. Nonlinear tracking control for multivariable constrained input linear systems. Int J Contr 2000; 73:1160–72. 132. Chen BM, Lee TH, Peng K, Venkataramanan V. Composite nonlinear feedback control: theory and an application. IEEE Trans Automat Contr 2003; 48:427–39.
  13. References 303 133. Venkataramanan V, Peng K, Chen BM, Lee TH. Discrete-time composite nonlinear feedback control with an application in design of a hard disk drive servo system. IEEE Trans Contr Syst Technol 2003; 11:16–23. 134. He Y, Chen BM, Wu C. Composite nonlinear control with state and measurement feed- back for general multivariable systems with input saturation. Syst Contr Lett 2005; 54:455–69. 135. He Y, Chen BM, Wu C. Composite nonlinear feedback control for general discrete- time multivariable systems with actuator nonlinearities. Proc 5th Asian Contr Conf; Melbourne, Australia; 2004. p. 539–44. 136. Lan W, Chen BM, He Y. Improving transient performance in tracking control for a class of nonlinear systems with input saturation. Syst Contr Lett 2006; 55:132–8. 137. He Y, Chen BM, Lan W. Improving transient performance in tracking control for a class of nonlinear discrete-time systems with input saturation. Proc 44th IEEE Conf Dec Contr; Seville, Spain; 2005. p. 8094–9. 138. Peng K, Chen BM, Cheng G, Lee TH. Modeling and compensation of nonlinearities and friction in a micro hard disk drive servo system with nonlinear feedback control. IEEE Trans Contr Syst Technol 2005; 13:708–21. 139. Chen BM, Zheng D. Simultaneous finite and infinite zero assignments of linear systems. Automatica 1995; 31:643–8. 140. Cheng G, Peng K, Chen BM, Lee TH. A microdrive track following controller de- sign using robust and perfect tracking control with nonlinear compensation. Mechatron 2005; 15:933–48. 141. Iannou PA, Kosmatopoulos EB, Despain AM. Position error signal estimation at high sampling rates using data and servo sector measurements. IEEE Trans Contr Syst Tech- nol 2003; 11:325–34. 142. Weerasooriya S, Low TS, Huang YH. Adaptive time optimal control of a disk drive actuator. IEEE Trans Magn 1994; 30:4224–6. 143. Xiong Y, Weerasooriya S, Low TS. Improved discrete proximate time optimal controller of a disk drive actuator. IEEE Trans Magn 1996; 32:4010–2. 144. Mizoshita Y, Hasegawa S, Takaishi K. Vibration minimized access control for disk drives. IEEE Trans Magn 1996; 32:1793–8. 145. Yamaguchi T, Nakagawa S. Recent control technologies for fast and precise servo sys- tem of hard disk drives. Proc 6th Int Workshop Adv Motion Contr; Nagoya, Japan; 2000. p. 69–73. 146. Tsuchiura KM, Tsukuba HH, Toride HO, Takahashi T. Disk system with sub-actuators for fine head displacement. US Patent No: 5189578; 1993. 147. Miu DK, Tai YC. Silicon micromachined SCALED technology. IEEE Trans Ind Elec- tron 1995; 42:234–9. 148. Fan LS, Ottesen HH, Reiley TC, Wood RW. Magnetic recording head positioning at very high track densities using a microactuator based, two stage servo system. IEEE Trans Ind Electron 1995; 42:222–33. 149. Aggarwal SK, Horsley DA, Horowitz R, Pisano AP. Microactuators for high density disk drives. Proc American Contr Conf; Albuquerque, NM; 1997. p. 3979–84. 150. Ding, J, Tomizuka M, Numasato H. Design and robustness analysis of dual stage servo system. Proc American Contr Conf; Chicago, IL; 2000. p. 2605–09. 151. Evans RB, Griesbach JS, Messner WC. Piezoelectric microactuator for dual stage con- trol. IEEE Trans Magn 1999; 35:977–82. 152. Fan LS, Hirano T, Hong J, Webb PR, Juan WH, Lee WY, et al. Electrostatic microactua- tor and design considerations for HDD application. IEEE Trans Magn 1999; 35:1000–5.
  14. 304 References 153. Guo L, Chang JK, Hu X. Track-following and seek/settle control schemes for high density disk drives with dual-stage actuators. Proc 2001 IEEE/ASME Int Conf Adv Intell Mechatron; Como, Italy; 2001. p. 1136–41. 154. Guo L, Martin D, Brunnett D. Dual-stage actuator servo control for high density disk drives. Proc 1999 IEEE/ASME Int Conf Adv Intell Mechatron; Atlanta, GA; 1999. p. 132–7. 155. Guo W, Weerasooriya S, Goh TB, Li QH, Bi C, Chang KT, et al. Dual stage actuators for high density rotating memory devices. IEEE Trans Magn 1998; 34:450–5. 156. Guo W, Yuan L, Wang L, Guo G, Huang T, Chen BM, et al. Linear quadratic optimal dual-stage servo control systems for hard disk drives. Proc 24th IEEE Ind Electron Soc Ann Conf; Aachen, Germany; 1998. p. 1405–10. 157. Hernandez D, Park SS, Horowitz R, Packard A. Dual-stage track-following design for hard disk drives. Proc American Contr Conf; San Diego, CA; 1999. p. 4116–21. 158. Horsley DA, Hernandez D, Horowitz R, Packard AK, Pisano AP. Closed-loop control of a microfabricated actuator for dual-stage hard disk drive servo systems. Proc American Contr Conf; Philadelphia, PA; 1998. p. 3028–32. 159. Hu X, Guo W, Huang T, Chen BM, Discrete time LQG/LTR dual-stage controller de- sign and implementation for high track density HDDs. Proc American Contr Conf; San Diego, CA; 1999. p. 4111–5. 160. Kobayashi M, Horowitz R. Track seek control for hard disk dual-stage servo systems. IEEE Trans Magn 2001; 37:949–54. 161. Li Y, Horowitz R. Track-following controller design of MEMS based dual-stage servos in magnetic hard disk drives. Proc 2000 IEEE Int Conf Robot Automat; San Francisco, CA; 2000. p. 953–8. 162. Mori K, Munemoto T, Otsuki H, Yamaguchi Y, Akagi K. A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density. IEEE Trans Magn 1991; 27:5298–300. 163. Schroeck SJ, Messner WC. On controller design for linear time-invariant dual-input single-output systems. Proc American Contr Conf; San Diego, CA; 1999. p. 4122–6. 164. Semba T, Hirano T, Hong J, Fan LS. Dual-stage servo controller for HDD using MEMS microactuator. IEEE Trans Magn 1999; 35:2271–3. 165. Suthasun T, Mareels I, Mamun AA. System identification and control design for dual actuated disk drive. Contr Eng Prac 2002; 12:665–76. 166. Takaishi K, Imamura T, Mizasgita Y, Hasegawa S, Ueno T, Yamada T. Microactuator control for disk drive. IEEE Trans Magn 1996; 32:1863–6. 167. Du CL, Guo GX. Lowering the hump of sensitivity functions for discrete-time dual- stage systems. IEEE Trans Contr Syst Technol 2005; 13:791–7. 168. Canudas de Wit C, Lischinsky P. Adaptive friction compensation with partially known dynamic friction model. Int J Adapt Contr Signal Proc 1997; 11:65–80. 169. Canudas de Wit C, Olsson H, Astr¨ m KJ, Lischinsky P. A new model for control of o systems with friction. IEEE Trans Automat Contr 1995; 40:419–25. 170. Canudas de Wit C, Olsson H, Astr¨ m KJ, Lischinsky P. Dynamic friction models and o control design. Proc American Contr Conf; San Francisco, CA; 1993. p. 1920–6. 171. Olsson H, Astr¨ m KJ. Observer-based friction compensation. Proc 35th IEEE Conf Dec o Contr; Kobe, Japan; 1996. p. 4345–50. 172. Dahl PR. Solid friction damping of mechanical vibrations. AIAA J 1976; 14:1675–82. 173. Ge SS, Lee TH, Ren SX. Adaptive friction compensation of servomechanisms. Int J Sys Sci 2001; 32:523–32. 174. Maria HA, Abrahams ID. Active control of friction-driven oscillations. J Sound Vibra 1996; 193:417–26.
  15. References 305 175. Abramovitch D, Wang F, Franklin G. Disk drive pivot nonlinearity modeling – Part I: frequency domain. Proc American Contr Conf; Baltimore, MD; 2004. p. 2600–3. 176. Ishikawa J, Tomizuka M. Pivot friction compensation using an accelerometer and a disturbance observer for hard disk drives. IEEE/ASME Trans Mechatron 1998; 3:194– 201. 177. Wang F, Abramovitch D, Franklin G. A method for verifying measurements and models of linear and nonlinear systems. Proc American Contr Conf; San Francisco, CA; 1993. p. 93–7. 178. Wang F, Hurst T, Abramovitch D, Franklin G. Disk drive pivot nonlinearity modeling – Part II: time domain. Proc American Contr Conf; Baltimore, MD; 1994. p. 2604–7. 179. Chang HS, Baek SE, Park JH, Byun YK. Modeling of pivot friction using relay function and estimation of its functional parameters. Proc American Contr Conf; San Francisco, CA; 1999. p. 3784–9. 180. Liu X, Liu JC. Analysis and measurement of torque hysteresis of pivot bearing in hard disk drive applications. Tribology Int 1999; 32:125–30. 181. Low TS, Guo W. Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J Microelectromech Syst 1995; 4:230–7. 182. Chang TP. Seismic response analysis of nonlinear structures using the stochastic equiv- alent linearization technique [PhD diss]. New York (NY): Columbia University; 1985. 183. Peng K, Venkataramanan V, Chen BM, Lee TH. Design and implementation of a dual- stage actuator HDD servo system via composite nonlinear feedback approach. Mecha- tron 2004; 14:965–88. 184. Hwang CL, Lin CH. A discrete-time multivariable neuro-adaptive control for nonlinear unknown dynamic systems. IEEE Trans Syst Man Cyb B 2000; 30:865–77. 185. Adriaens HJMTA, de Koning WL, Banning R. Modeling piezoelectric actuators. IEEE/ ASME Trans Mechatron 2000; 5:331–41. 186. Cruz-Hernandez JM, Hayward V. Phase control approach to hysteresis reduction. IEEE Trans Contr Syst Technol 2001; 9:17–26. 187. Cheng HM, Ewe MTS, Chiu GTC, Bashir R. Modeling and control of piezoelectric cantilever beam micro-mirror and micro-laser arrays to reduce image banding in elec- trophotographic processes. J Micromech Microeng 2001; 11:487–98. 188. Guo G, Chen R, Low TS, Wang Y. Optimal control design for hard disk drive servosys- tems. IEE Proc–Contr Theor Appl 2002; 149:237–42. 189. Ewe MTS, Grice JM, Chiu GTC, Allebach JP, Chan CS, Foote W. Banding reduction in electrophotographic processes using a piezoelectric actuated laser beam deflection device. J Imaging Sci Technol 2002; 46:433–42. 190. Lin CL, Jan HY, Shieh NC. GA-based multiobjective PID control for a linear brushless DC motor. IEEE/ASME Trans Mechatron 2003; 8:56–65. 191. Hwang CL, Jan C. Optimal and reinforced robustness designs of fuzzy variable struc- ture tracking control for a piezoelectric actuator system. IEEE Trans Fuzzy Syst 2003; 11:507–17. 192. Jan C, Hwang CL. A nonlinear observer-based sliding-mode control for piezoelectric actuator systems: Theory and experiments. J Chinese Inst Engr 2004; 27:9–22. 193. Huang YC, Lin DY. Ultra-fine tracking control on piezoelectric actuated motion stage using piezoelectric hysteretic model. Asian J Contr 2004; 6:208–16. 194. Hwang CL, Jan C. Nano trajectory control of multilayer low-voltage PZT render actu- ator systems. Asian J Contr 2004; 6:187–98. 195. Hwang CL, Chen YM. Discrete sliding-mode tracking control of high-displacement piezoelectric actuator systems. J Dynam Syst–Trans ASME 2004; 126:721–31.
  16. 306 References 196. Hwang CL, Chen YM, Jan C. Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control. IEEE Trans Contr Syst Technol 2005; 13:56–66. 197. Ikhouane F, Manosa V, Rodellar J. Adaptive control of a hysteretic structural system. Automatica 2005; 41:225–31. 198. Cruz-Hernandez JM, Hayward V. Position stability for phase control of the Preisach hysteresis model. Trans Canadian Soc Mech Eng 2005; 29:129–42. 199. Hwang CL, Jan C. State-estimator-based feedback control for a class of piezoelectric systems with hysteretic nonlinearity. IEEE Trans Syst Man Cyb A 2005; 35:654–64. 200. Ikhouane F, Rodellar J. On the hysteretic Bouc–Wen model. Nonlinear Dynam 2005; 421:63–78. 201. Moheimani SOR, Vautier BJG. Resonant control of structural vibration using charge- driven piezoelectric actuators. IEEE Trans Contr Syst Technol 2005; 13:1021–35. 202. Caughey TK. Derivation and application of the Fokker–Planck equation to discrete non- linear dynamic systems subjected to white random excitation. J Acoust Soc Am 1963; 35:1683–92. 203. Crandall ST. Perturbation techniques for random vibration of nonlinear systems. J Acoust Soc Am 1963; 35:1700–05. 204. Lyon RH. Response of a nonlinear string to random excitation. J Acoust Soc Am 1960; 32:953–60. 205. Booton, Jr., RC. Nonlinear control systems with random inputs. IRE Trans Circuit The- ory 1954; CT–1:9–18.
  17. Index Almost disturbance decoupling, 68, 70, 74, Data flex cables, 245 275 Digital signal processor, 17 applications, 275 Disturbances, 11, 225 continuous-time, 70 decoupling, 271 discrete-time, 74 modeling, 13 solvability conditions, 70, 74 rejection, 12 Dual-stage actuators, 218 Bang-bang control, 98, 99 control configuration, 221 Benchmark problem, 291 dynamical models, 220 Bilinear transformations frequency responses, 218 control, 76 modeling, 218 physical configuration, 218 Canonical forms of linear systems position error signal test, 239 special coordinate basis, 38 runout disturbances, 225 CNF control toolkit, 164 sensitivity functions, 225 Complementary sensitivity functions, 48 servo systems, 220 two-degrees-of-freedom control, 49 track following, 225 Composite nonlinear feedback control Dynamic signal analyzer, 18 continuous-time, 120 design parameter selection, 139, 158 Experimental setup, 17 discrete-time, 142 full-order output feedback, 125, 147 HDD servo systems, 205, 206, 225 Finite zero structure of linear systems, 39, 43 interpretation, 139 Friction Lyapunov functions, 123, 125, 127, 145, compensation, 257 147 model, 246 microdrive servo systems, 258 modeling, 245 nonlinear tuning function, 123 reduced-order output feedback, 130, 149 Gain margins, 48, 191, 209, 225, 259 root locus, 139, 173 Geometric subspaces of linear systems, 45 software toolkit, 164 , 46 state feedback, 121, 144 , 46 systems with disturbances, 132, 151 strongly controllable subspaces, 45 systems without disturbances, 121, 142 weakly unobservable subspaces, 45
  18. 308 Index control, 49 proximate time-optimal control, 202, 206 configuration, 50 resonance compensation, 11 continuous-time, 50 resonance modes, 180, 220, 255 discrete-time, 59 robust and perfect tracking, 203 full-order output feedback, 56, 64 servo systems, 201, 217, 220, 255 optimal values, 52, 53, 61 single-stage actuated, 201 perturbation approach, 53, 62 sources of errors, 12 reduced-order output feedback, 57, 66 spindle motor assembly, 10 regular case, 52, 61, 62 suspension assembly, 10 Riccati equations, 53, 54, 61–63 track following, 3, 225 singular case, 52, 53, 61, 62 track misregistration, 11, 239 state feedback, 54, 63 track seeking, 3, 206 structural decomposition approach, 54, track settling, 3 56, 57, 63, 64, 66 VCM actuators, 3, 201 control, 68 Hysteresis, 270 almost disturbance decoupling, 70, 74, 277 Infinite zero structure of linear systems, 39, bilinear transformation, 76 44 configuration, 50 Invariant zeros of linear systems, 43 continuous-time, 69 Invertibility of linear systems, 44 discrete-time, 74 degenerate, 44 measurement feedback, 73 invertible, 44 optimal values, 69, 74 left invertible, 44 perturbation approach, 70 right invertible, 44 regular case, 70 Riccati equations, 70 Laser Doppler vibrometer, 18 singular case, 70 Least square estimation, 29 state feedback, 71 Linear quadratic regulator structural decomposition approach, 71, 73 Riccati equations, 90 suboptimal controller, 70 solutions, 90 Hamiltonian, 97 Linear systems toolkit, 40 Hard disk drives Loop transfer recovery, 88 actuator assembly, 10 achieved loop, 90 composite nonlinear feedback control, at input point, 88 205, 206, 225 at output point, 94 data flex cable, 245 closed-loop recovery, 94 disturbance modeling, 13 control configuration, 90 disturbances, 11, 12 CSS architecture based, 92 dual-stage actuated, 217 duality, 94 experimental setup, 17 full-order output feedback, 91 first disk, 6 observer based, 91 friction, 245 recovery error, 90, 92, 93 future trends, 8 reduced-order output feedback, 92 historical development, 5, 6 target loop, 89 mechanical structure, 3, 9 Lyapunov functions microdrive, 243 composite nonlinear feedback control, mode-switching control, 203, 206 123, 125, 127, 145, 147 modeling, 245 mode-switching control, 107, 109 nonlinearities, 245 proximate time-optimal control, 107
  19. Index 309 Microactuators, 218, 269 Piezoelectric actuator system, 269 control, 220 design formulation, 275 dual-stage actuator, 218 design specifications, 270 frequency responses, 218 dynamical model, 269 modeling, 218 hysteretic model, 270, 272 piezoelectric, 269 introduction, 269 Microdrives, 243 simulations, 280 dynamic model, 249, 255 zero structures, 277 friction, 246 Pontryagin’s principle, 97 modeling, 245 Position error signal tests, 198, 239 nonlinearities, 249 dual-stage actuators, 239 resonance modes, 255 dual-stage servo systems, 239 sensitivity functions, 259 VCM actuators, 198 Mode-switching control, 104 Proximate time-optimal control, 101, 105 configuration, 105 configurations, 101, 103 control law, 105 continuous-time, 101 HDD servo systems, 203, 206 control laws, 101, 104 Lyapunov functions, 107, 109 control zones, 102 stability analysis, 105 discrete-time, 103 switching conditions, 109 HDD servo systems, 202, 206 Modeling and identification, 21 Lyapunov functions, 107 confidence region, 28 sampling frequency, 104 dual-stage actuator, 220 impulse analysis, 22 Relative degree of linear systems, 44 least square method, 28 Resonance modes loss function, 27 compensation, 11, 15 microdrive, 245 microactuator, 220 model order, 27 microdrive, 255 model validation, 27, 33 VCM actuator, 180 Monte Carlo estimation, 32, 244, 249, 250 Riccati equations physical effect approach, 32 control, 53, 54, 61–63 prediction error method, 26 control, 70 step analysis, 24 linear quadratic regulator, 90 VCM actuator, 180 robust and perfect tracking, 80, 82 Monte Carlo estimation, 33, 244, 249, 250 Robust and perfect tracking, 76, 184 continuous systems, 76 Normal rank of linear systems, 43 continuous-time, 76 Norms controller structures, 76, 85 -norm, 77 discrete systems, 84 -norm, 52, 60 discrete-time, 84 -norm, 69, 74 full-order output feedback, 81, 83 Notch filters, 17, 182, 201, 258 hard disk drives, 203 measurement feedback, 86 Phase margins, 48, 191, 209, 225, 259 perturbation approach, 81 PID control, 47 Riccati equations, 80, 82 configuration, 47 solvability conditions, 77, 85 gain selection, 48 state feedback, 78, 85 sensitivity functions, 48 structural decomposition approach, 78, Ziegler–Nichols tuning, 48 81, 83, 85, 86
  20. 310 Index Rosenbrock system matrix, 43 minimum time, 99 Runout disturbances, 11, 191, 225 open-loop, 98 dual-stage actuators, 225 optimal trajectories, 97 nonrepeatable runout, 14 Pontryagin’s principle, 97 repeatable runout, 13 Track misregistration, 11, 239 VCM actuators, 191 dual-stage servo systems, 239 Two-degrees-of-freedom control system, 49 Sensitivity functions, 48, 191, 209, 225, 259 two-degrees-of-freedom control, 49 VCM actuators, 3, 179, 245 Software toolkits, 17 design specifications, 182, 258 CNF control, 17, 164 driver, 246 linear systems, 17, 40 dynamical models, 180, 181, 201, 220 Special coordinate basis, 38, 78 frequency responses, 181, 201 block diagram, 42 implementation, 198, 259 compact form, 40 microdrive, 243 properties, 43–45 modeling, 180, 245 state-space decomposition, 45 position error signal tests, 198 transformations, 39 runout disturbances, 191 Stability margins, 48 sensitivity functions, 191, 259 servo systems, 201 Time-optimal control, 96, 163 track following, 188, 259 closed-loop, 99 track seeking, 206 control scheme, 100 Vibration-free table, 18 control signals, 97, 99 deceleration trajectories, 100 Zero placement, 140, 159 Hamiltonian, 97 Ziegler–Nichols PID tuning, 47
Đồng bộ tài khoản