intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Hướng dẫn Đề số 12

Chia sẻ: Hanh My | Ngày: | Loại File: PDF | Số trang:3

52
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Câu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt  y coù CÑ, CT  y  0 hoaë y  0  m  1 c  CÑ CT  Câu II: 1) PT  2) Đặt PT  (2 cos x  1)(sin x cos x  2)  0    2sin x  3  0   x   k 2 3 2 x  u  0; 3 2x 1  1  v .  x  0   x  log 1  5 2   2  2  u 3  1  2v...

Chủ đề:
Lưu

Nội dung Text: Hướng dẫn Đề số 12

  1. Hướng dẫn Đề số 12 Câu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt   y  0 hoaë y  0  m  1  y coùCÑ, CT c  CÑ CT (2 cos x  1)(sin x cos x  2)  0 Câu II: 1) PT       k 2 x 3  2sin x  3  0  2) Đặt . 2 x  u  0; 3 2x 1  1  v x  0 u 3  1  2v u 3  1  2v u  v  0 PT        3 3  x  log 1  5 2 2 u  2u  1  0  v  1  2u (u  v )(u  uv  v  2)  0   2   2   2 2 Câu III: Đặt   cos tdt cos xdx x   t  dx  dt I   3 3 0 (sin t  cos t ) 0 (sin x  cos x ) 2    2 12   4 1 dx dx 1 I 2I      cot( x  )  1  2 (sin x  cos x ) 2 20 2 40 sin 2 ( x  ) 0 4 a3 . Xét hàm số Câu IV:    VSABC  (sin   sin 3  ) y  sin x  sin 3 x   SCA   0;   2 6 a3 a3 3 trên khoảng . Từ BBT khi ,   1 sin    (VSABC ) max  ymax   0;   2 6 9 3      0;   2 Câu V: Đặt 1 1 t  2x  2 x  t'  0 2 2x 2 2 x nghịch biến trên . Khi đó: PT  [2; 2]  t  [2; 2]  t  t ( x) 2m  t 2  2t  4 Xét hàm f (t )  t  2t  4 với t  [2; 2] . 2 Từ BBT  Phương trình có 2 nghiệm phân biệt 5  5  2m  4    m  2 2 Câu VI.a: 1) PT đường thẳng d cắt tia Ox tại A(a;0), tia Oy tại B(0;b): a  b  1 (a,b>0) xy
  2. M(3; 1)  d 1  a  b . Cô  si 31 31 2 .  ab  12 ab  a  3b a  6 Mà  OA  3OB  a  3b  2 3ab  12  (OA  3OB ) min  12   3 1 1   b  2 a  b  2  Phương trình đường thẳng d là: xy   1  x  3y  6  0 62 2) Gọi (Q) là mặt phẳng trung trực của đoạn AB  (Q): x  y  z  3  0 d là giao tuyến của (P) và (Q)  d: x  2; y  t  1; z  t M  d  M (2; t  1; t)  AM  2t  8t  11 . 2 Vì AB = 12 nên  MAB đều khi MA = MB = AB  6  18 4  18  4  18  2t 2  8t  1  0  t   M  2; ;   2 2 2 Câu VII.a: Ta có (1  x)  C  C x  C x  ....  (1) C x n 0 1 2 2 n n n B n n n n 1 1 Vì  (1  x) dx  n 1 1 ,  Bdx  C  1 C  1 C  ...  (1) n 1 1 C n 0 1 2 n n  n  1  13  n  12 n n n n   2 3 0 0 nk   12 , 2 2 Tk 1  C12 .212 k .x 8k 36  x 5 ) n   C12 .( 3 ) k ( x5 ) k k ( 8k  36  20  k  7 3 x x k 0  Hệ số của x là: C .2  25344 20 7 5 12 x  t Câu VI.b: 1) Phương trình tham số của : .M   y  3t  5  M(t; 3t – 5)  t  9  t  7  M (9; 32), M ( 7 ; 2) S MAB  S MCD  d (M , AB). AB  d ( M , CD ).CD 3 3 2) Gọi AB là đường vuông góc chung của  ,  : A(2t; t; 4)   1 2 1 , B(3  s; s; 0)   2 AB  1, AB  2  A(2;1; 4), B(2;1;0)  Phương trình mặt cầu là: ( x  2)  ( y  1)  ( z  2)  4 2 2 2 Câu VII.b: Hàm số luôn có hai điểm cực trị x  m  2, x  m  2 1 2 . Khoảng cách giữa hai điểm cực trị là AB  ( y  y )  ( x  x )  2 x  x = 4 2 (không đổi) 2 2 2 1 2 1 1 2
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2