CHÖÔNG IX: HEÄ PHÖÔNG TRÌNH LÖÔÏNG GIAÙC
I. GIAÛI HEÄ BAÈNG PHEÙP THEÁ
Baøi 173: Giaûi heä phöông trình:
(
)
()
2cosx 1 0 1
3
sin 2x 2
2
−=
=
Ta coù:
()
1
1cosx
2
=
()
xk2k
3
π
⇔=±+ π Z
Vôùi xk
32
π
=+ π
thay vaøo (2), ta ñöôïc
23
sin 2x sin k4
32
π
⎛⎞
=+π=
⎜⎟
⎝⎠
Vôùi x
3
π
=− + πk2
thay vaøo (2), ta ñöôïc
23
sin 2x sin k4
32
π
⎛⎞
=−+π=
⎜⎟
⎝⎠
3
2
(loaïi)
Do ñoù nghieäm ca heä laø: 2,
3
π
=
xkk
Baøi 174: Giaûi heä phöông trình:
sin x sin y 1
xy 3
+
=
π
+=
Caùch 1:
Heä ñaõ cho
xy xy
2sin .cos 1
22
xy 3
+−
=
π
+=
π−
=
=
⎪⎪
⇔⇔
⎨⎨
π
π
⎪⎪
+=
+=
xy xy
2.sin .cos 1 cos 1
62 2
xy
xy 3
3
4
2
2
3
3
−= π
⎪⎪
⇔⇔
⎨⎨
π+=
⎪⎪
+=
xy
x
yk
k
xy
xy
()
2
6
2
6
π
=+ π
⇔∈
π
=−π
xk
kZ
yk
Caùch 2:
Heä ñaõ cho
33
31
sin sin 1 cos sin 1
322
33
sin 1 2
332
2
6
2
6
ππ
=− =−
⎪⎪
⇔⇔
⎨⎨
π
⎛⎞
⎪⎪
+−=
+
=
⎜⎟
⎪⎪
⎝⎠
π
π
=− =−
⎪⎪
⇔⇔
⎨⎨
πππ
⎛⎞
⎪⎪
+=
+
=+ π
⎜⎟
⎝⎠
π
=+ π
⇔∈
π
=− π
yx yx
xx
x
x
yx yx
x
x
k
xk
k
yk
Baøi 175: Giaûi heä phöông trình: sin x sin y 2 (1)
cos x cos y 2 (2)
+=
+=
Caùch 1:
Heä ñaõ cho
xy xy
2sin cos 2 (1)
22
xy xy
2cos cos 2 (2)
22
+−
=
+−
=
Laáy (1) chia cho (2) ta ñöôïc:
+
⎛⎞
=
⎜⎟
⎝⎠
xy xy
tg 1 ( do cos 0
22
=
khoâng laø nghieäm cuûa (1) vaø (2) )
24
22
22
⇔=+π
ππ
+=+ π=−+ π
xy k
x
yk yxk
thay vaøo (1) ta ñöôïc: sin x sin x k2 2
2
π
⎛⎞
+−+π=
⎜⎟
⎝⎠
sin x cos x 2⇔+=
2 cos 2
4
2,
4
π
⎛⎞
⇔−
⎜⎟
⎝⎠
π
⇔− = π
=
x
xhh
Do ñoù: heä ñaõ cho
()
2,
4
2,,
4
π
=+ π
π
=
+− π
xhh
ykhkh
Caùch 2: Ta coù
A
BACB
CD ACBD
=+=
⎧⎧
⎨⎨
=−=
⎩⎩
D+
Heä ñaõ cho
(
)
(
)
()()
⎧− + =
++−=
⎧π π
⎛⎞ ⎛⎞
−+ =
⎜⎟ ⎜⎟
⎪⎝
ππ
⎛⎞ ⎛⎞
++ +=
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠
sin x cos x sin y cos y 0
sin x cos x sin y cos y 2 2
2sin x 2sin y 0
44
2sin x 2sin y 2 2
44
sin sin 0
44
sin sin 0
44
sin 1
4
sin sin 2
44
sin 1
4
2
42
2
42
sin sin 0
44
xy
xy
x
xy
y
xk
yh
xy
⎧π π
⎛⎞
+−=
⎜⎟
⎧π π ⎝⎠
⎛⎞
−+ =
⎜⎟
π
⎪⎝ ⎛⎞
⇔⇔+=
⎨⎨
⎜⎟
ππ ⎝⎠
⎛⎞
⎪⎪
++ +=
⎜⎟
⎪⎪
π
⎝⎠ ⎛⎞
+=
⎜⎟
⎝⎠
ππ
+=+π
ππ
⇔+=+π
ππ
⎛⎞
−+ =
⎜⎟
⎝⎠
π
=+ π
π
=+ π
xk2
4
yh2,h,k
4Z
Baøi 176: Giaûi heä phöông trình: −− =
+=
tgx tgy tgxtgy 1 (1)
cos2y 3cos2x 1 (2)
Ta coù: tgx tgy 1 tgxtgy
=+
()
2
1tgxtgy 0
tg x y 1 tgx tgy 0
1tgxtgy 0 1tgx 0(VN)
+=
−=
⎪⎪
⇔∨=
⎨⎨
+≠
+=
(
xy k kZ
4
π
⇔−=+π
)
,
vôùi
x, y k
2
π
xy k
4
π
⇔=++π,
vôùi
x, y k
2
π
Thay vaøo (2) ta ñöôïc: cos2y 3 cos 2y k2 1
2
π
⎛⎞
+
++ π=
⎜⎟
⎝⎠
cos 2 3 s 2 1
31 1
s2 cos2 sin2
222 6
yiny
in y y y
⇔− =
π
⎛⎞
⇔−=
⎜⎟
⎝⎠
1
2
=
()
5
222 2
66 6 6
y h hay y h h Z
ππ π π
⇔−=+π =+π
,,
62
(loïai)yhhhayyhh
ππ
⇔=+π =+π
฀฀
Do ñoù:
Heä ñaõ cho
() ()
5
6,
6
xkh
hk Z
yh
π
=++π
⇔∈
π
=+π
Baøi 177: Giaûi heä phöông trình
3
3
cos x cos x sin y 0 (1)
sin x sin y cos x 0 (2)
−+=
−+=
Laáy (1) + (2) ta ñöôïc: 33
sin x cos x 0
+
=
33
3
sin x cos x
tg x 1
tgx 1
xk(k
4
⇔=
⇔=
⇔=
π
⇔=+πZ)
Thay vaøo (1) ta ñöôïc:
(
)
32
sin y cos x cos x cos x 1 cos x=− =
==
21
cos x.sin x sin 2x sin x
2
ππ
⎛⎞
=− +
⎜⎟
⎝⎠
1sin sin k
22 4
π
π
⎛⎞
=− + π
⎜⎟
⎝⎠
1sin k
24
=
2(neáu k chaün)
4
2(neáu k leû)
4
Ñaët 2
sin 4
α= (vôùi
02
<
α< π
)
Vaäy nghieäm heä
()
ππ
⎧⎧
=− + π =− + + π
⎪⎪
⎪⎪
⎨⎨
+ π =−α+ π
⎡⎡
⎪⎪
⎢⎢
⎪⎪
=π−α+ π =π+α+ π
⎣⎣
⎩⎩
฀฀
฀฀
x2m,m x 2m1,m
44
yh2,h y 2h,h
yh2,hyh2,h
II. GIAÛI HEÄ BAÈNG PHÖÔNG PHAÙP COÄNG
Baøi 178: Giaûi heä phöông trình:
()
()
1
sin x.cos y 1
2
tgx.cotgy 1 2
=−
=
Ñieàu kieän: cos x.sin y 0
Caùch 1: Heä ñaõ cho
() ()
11
sin x y sin x y
22
sin x.cos y 10
cos x.sin y
+
+−=
⎡⎤
⎣⎦
−=
()
(
)
() ()
()
+
+−=
−=
+
+−=
−=
sin x y sin x y 1
sin x cos y sin y cos x 0
sin x y sin x y 1
sin x y 0
(
)
()
+=
−=
π
+=−+ π
−=π
sin x y 1
sin x y 0
xy k2,k
2
xy h,h
()
()
ππ
=− + +
ππ
=− +
x2kh,k,h
42
y2kh,k,h
42
(nhaän do sin y cos x 0)