Ủ Ề
Ố
Ừ
CH Đ 15: PHÉP TR HAI S NGUYÊN.
Ắ
Ấ
Ặ
Ắ
Ể
Ế
QUY T C D U NGO C. QUY T C CHUY N V
Ầ Ế Ớ Ứ A. KI N TH C C N NH
ừ ố 1. Phép tr hai s nguyên
ố ừ ố Mu n tr s nguyên ố a cho s nguyên b, ta c ng ộ a v i s đ i c a ớ ố ố ủ b.
a – b = a + (–b)
ệ ượ ừ ự Phép tr trong luôn th c hi n đ c
ặ ắ ấ 2. Quy t c d u ngo c
ỏ ấ ứ ặ ấ ướ ả ổ ấ ố ạ Khi b d u ngo c có d u “–“ đ ng tr ặ c, ta ph i đ i d u các s h ng trong ngo c:
ấ ấ ấ ấ d u “+” thành d u “–“; d u “–“ thành d u “+”.
ỏ ấ ứ ặ ấ ướ ố ạ ấ ặ ẫ Khi b d u ngo c có d u “+” đ ng tr c, thì d u các s h ng trong ngo c v n gi ữ
nguyên
ể ế ắ 3. Quy t c chuy n v
ề ộ ố ạ ể ừ ế ủ ứ ế Khi chuy n v m t s h ng t ả ổ ấ ộ ẳ v này sang v kia c a m t đ ng th c, ta ph i đ i d u
ố ạ ấ ấ ấ ấ các s h ng đó: d u “+” thành d u “–“; d u “–“ thành d u “+”.
ế N u thì ; ; ….
ộ ố ấ ườ ẳ 4. M t s tính ch t th ứ ế ổ ng dùng khi bi n đ i các đ ng th c
ế N u thì
ế N u thì
ộ ộ ố ọ ổ ạ ố ừ 5. M t dãy các phép tính c ng tr các s nguyên g i là t ng đ i s .
ạ ố ộ ổ ể Trong m t t ng đ i s , ta có th :
ấ ủ ổ ị ố ạ Thay đ i tùy ý v trí các s h ng kèm theo d u c a chúng.
ặ ấ ố ạ ể ế ặ ằ ộ ớ ướ Đ t d u ngo c đ nhóm các s h ng m t cách tùy ý v i chú ý r ng n u tr ấ c d u
ả ổ ấ ấ ả ố ạ ặ ấ ặ ngo c là d u “–“ thì ta ph i đ i d u t t c các s h ng trong ngo c.
Ơ Ả Ạ B. CÁC D NG TOÁN C B N
Ạ ố ắ ừ Quy t c phép tr hai s nguyên D NG 1:
ươ ả I/ Ph ng pháp gi i.
ể ự ừ ừ ệ ố ổ ộ ớ ố ố ế Đ th c hi n phép tr hai s nguyên, ta bi n đ i phép tr thành phép c ng v i s đ i
ắ ộ ự ệ ố ế ồ r i th c hi n quy t c c ng hai s nguyên đã bi t
ố ố ủ Hai s ố a và –a là hai s đ i c a nhau, ta có:
ẫ ậ II/ Bài t p m u.
ể ễ ổ ồ ệ Bài 1. Bi u di n các hi u sau thành t ng r i tính:
2) 1)
4) 14 – 20 3)
L i gi ờ ả i
1)
2)
3)
4) 14 – 20 =
ụ ố ữ ả ế ằ ể a và b trên tr c s , bi t r ng: Bài 2. Tìm kho ng cách gi a hai đi m
2) 1)
4) 3)
L i gi ờ ả i
ệ ủ ố ớ ụ ố ằ ừ ữ ể ả ố ỏ Kho ng cách gi a hai đi m a và b trên tr c s b ng hi u c a s l n tr đi s nh và
ặ ằ ỗ ườ ế ế ế ả ợ ằ b ng a – b (n u a > b) ho c b ng b – a (n u a < b). Trong m i tr ng h p ta có k t qu sau
1)
2)
3)
4)
ế ằ t r ng ố Bài 3. Tìm s nguyên x, bi
1) 2)
3) 4)
L i gi ờ ả i
1)
2)
3)
4)
ậ ậ ụ III. Bài t p v n d ng.
ỏ ạ
ạ
ạ
ồ
ồ
ể Bài 1. B n Nam có 10 nghìn đ ng, b n mua quy n sách giá 15 nghìn đ ng. H i b n Nam còn bao
nhiêu đ ng?ồ
ể ễ ổ ồ ệ Bài 2. Bi u di n các hi u sau thành t ng r i tính
1) 2)
3) 4)
ề ố ả ợ Bài 3. Đi n s thích h p vào b ng sau:
0
a b 8 18 5
ụ ố ữ ả ế ằ ể a và b trên tr c s , bi t r ng Bài 4. Tìm kho ng cách gi a hai đi m
1) 2)
3) 4)
ố ế ằ x, bi t r ng Bài 5. Tìm s nguyên
1) 2)
3) 4)
ề ệ ậ ạ ư a nh sau: Bài 6. Ba b n An, Bình, Cam tranh lu n v kí hi u –
ấ ằ ố An nói: “ –a luôn là s nguyên âm vì nó có d u “–“ đ ng tr ướ ” c
ố ố ố ủ Bình nói khác: “ –a là s đ i c a a, nên a là s nguyên d ươ ”. ng
ậ ạ ố ố ủ ể ế ấ ố –a có th là b t kì s nguyên nào, vì –a là s đ i c a a nên n u a Cam tranh lu n l i: “
ố ươ ế ố là s nguyên d ng thì –a là s nguyên âm, n u –a = 0 thì a = 0”
ế ạ ồ ớ B n đ ng ý v i ý ki n nào?
ừ ư ố ạ ủ ề ế ắ ạ ậ Bài 7. Ba b n Quy t, Th ng, Trung tranh lu n v các s h ng c a phép tr nh sau:
ế ỏ ơ ố ừ ố ị ừ ừ ộ Trong m t phép tr thì s b tr luôn không nh h n s tr và hi u s Quy t nói: “ ệ ố”
ậ ắ ư ớ ượ ừ ộ Ch a đúng, t ể có th tìm đ c m t phép tr trong đó s b tr nh ố ị ừ ỏ Th ng tranh lu n: “
ơ ố ừ h n s tr và hi u s ệ ố”
ớ ừ ự ệ ố ượ ố ị ừ , phép tr hai s nguyên luôn th c hi n đ c và s b tr có Trung nói thêm: “Theo t
ỏ ơ ố ừ ể ớ ặ ằ ơ ệ ” th l n h n, b ng ho c nh h n s tr và hi u
ế ủ ạ ồ ớ ụ B n đ ng ý v i ý ki n c a ai? Vì sao? Cho ví d ?
ƯỚ Ẫ H NG D N
ả ợ ồ ồ ứ Bài 1. Nam còn 5 nghìn đ ng, t c là Nam ph i n 5 nghìn đ ng.
Bài 2.
a)
b)
c)
d)
Bài 3.
a 1 4 8 0
b 5 10 18 13
a – b 6 6 10 13
a 1 4 8 0
b 5 10 18 13
ụ ố ữ ế ể ả ả Bài 4. Kho ng cách gi a hai đi m a và b trên tr c s là nên ta có k t qu :
a) 24 b) 7 c) 10 d) 27
Bài 5.
a)
b)
c)
d)
ạ Bài 6. B n Cam nói đúng.
ể ả ạ ả Bài 7. B n Trung nói đúng. Có th x y ra các kh năng.
Ví d : ụ
thì 6 > 5 và 6 > 1;
thì và
thì và
thì và
Ạ ặ ắ ấ Quy t c d u ngo c D NG 2:
ươ ả I/ Ph ng pháp gi i.
ặ ể ỏ ấ ắ ấ ụ ể ặ ổ ướ Đ tính nhanh các t ng, ta áp d ng quy t c d u ngo c đ b d u ngo c, tr ặ c ngo c
ả ổ ấ ỏ ấ ố ạ ặ ấ ặ ướ ặ có d u “–“ khi b d u ngo c ph i đ i d u các s h ng trong ngo c, tr ấ c ngo c có d u
ặ ữ ố ạ ụ ấ ặ ỏ “+” khi b ngo c gi nguyên d u các s h ng bên trong ngo c. Sau đó áp d ng các tính
ặ ố ạ ế ợ ạ ố ấ ặ ổ ộ ố ch t giao hoán, k t h p trong t ng đ i s . Chú ý g p các c p s h ng đ i nhau ho c các
ụ ế ẵ ả ẵ ặ ố ạ c p s h ng có k t qu ch n ch c, ch n trăm,….
ặ ấ ố ạ ế ầ ặ ặ ằ ướ Ho c ta c n nhóm các s h ng vào trong ngo c: N u đ t d u “–“ đ ng tr ấ c d u
ả ổ ấ ặ ấ ố ạ ế ặ ằ ướ ấ ngo c thì ph i đ i d u các s h ng đó, còn n u đ t d u “+” đ ng tr ẫ ặ c d u ngo c thì v n
ữ ố ạ ấ gi nguyên d u các s h ng đó.
ẫ ậ II/ Bài t p m u.
Bài 1. Tính nhanh
1) 2)
3) 4)
L i gi ờ ả i
ậ ụ ắ ấ ế ợ ặ ấ V n d ng quy t c d u ngo c và tính ch t giao hoán, k t h p ta có:
1)
2)
3)
4)
ổ ọ Bài 2. Thu g n các t ng sau:
1)
2)
3)
L i gi ờ ả i
ậ ụ ặ ắ ấ V n d ng quy t c d u ngo c ta có:
1)
2)
3)
ị ủ ứ ể Bài 3. Cho . Tính giá tr c a bi u th c sau
1)
2)
3)
L i gi ờ ả i
1)
2)
3)
ậ ướ ố ọ Nh n xét: Tr c khi thay s vào tính ta nên thu g n phép tính
ậ ậ ụ III/ Bài t p v n d ng.
Bài 1. Tính nhanh
b) a)
d) c)
ổ ọ Bài 2. Thu g n các t ng sau:
a)
b)
c)
ị ể ứ Bài 3. Cho . Tính giá tr bi u th c
b) a)
c)
ộ ổ ợ ạ ố Bài 4. Tính t ng đ i s sau m t cách h p lí
a)
b)
c)
d)
ƯỚ Ẫ H NG D N
Bài 1.
a)
b)
c)
d)
Bài 2.
a)
b)
c)
Bài 3. Cho a = 13, b = 25, c = 30. Ta có
a)
b)
c)
Bài 4.
a)
b)
c)
d)
Ạ ậ ụ ể ế ắ Toán v n d ng quy t c chuy n v (toán tìm x) D NG 3:
ươ ả I/ Ph ng pháp gi i.
ố ớ ạ ộ ẳ ỏ ấ ụ ậ ắ ầ ặ ứ Đ i v i d ng toán tìm x trong m t đ ng th c, ta c n v n d ng quy t c b d u ngo c
ỗ ế ủ ẳ ế ể ụ ứ ể ắ ậ ọ ố ệ ữ và quy t c chuy n v đ rút g n m i v c a đ ng th c. Cu i cùng v n d ng quan h gi a
ế ể ố x. các s có phép tính (n u có) đ tìm
ẫ ậ II/ Bài t p m u.
ố x, bi t: ế Bài 1. Tìm s nguyên
L i gi ờ ả i
ụ ặ ắ ỏ ấ Áp d ng quy t c b d u ngo c, ta có:
ụ ế ể ắ Áp d ng quy t c chuy n v , ta có:
V y ậ x = 8 : 2 = 4
ố x, bi t:ế Bài 2. Tìm s nguyên
1)
2)
L i gi ờ ả i
ệ ố ủ ố ậ ụ ề ể ắ ị ị ế V n d ng đ nh nghĩa v giá tr tuy t đ i c a s nguyên và quy t c chuy n v
ặ 1) ho c –12
V i ớ
V i ớ
ặ ậ V y ho c
ệ ố ề ề ệ ầ ị ị 2) Theo đ nh nghĩa v giá tr tuy t đ i, ta c n có đi u ki n:
Khi đó ho c ặ
V i ớ
ố ớ ả V i (không ph i là s nguyên)
V y ậ x = 7
ố ớ ấ ẳ ế ươ ứ ể ắ ố ự ư ố ớ ẳ ng t ứ nh đ i v i đ ng th c, Bài 3. Đ i v i b t đ ng th c ta cũng c quy t c chuy n v t
ố ứ t c là:. Hãy tìm s nguyên x, bi t:ế
1)
2)
L i gi ờ ả i
1)
2) Cách 1:
V y ậ
Cách 2: T ừ
V i ớ
V i ớ
V i ớ
V i ớ
V i ớ
ậ ậ ụ III/ Bài t p v n d ng
ố x, bi t:ế Bài 1. Tìm s nguyên
b) a)
d) c)
ố x, bi t:ế Bài 2. Tìm s nguyên
b) a)
d) c)
ế t: ố Bài 3. Tìm s nguyên x, bi
b) ; a) ;
d) . c) ;
ố Bài 4. Tìm s nguyên x sao cho:
b) . a) ;
ƯỚ Ẫ H NG D N
Bài 1.
a)
b)
c)
d)
Bài 2.
a)
b)
c)
d)
Bài 3.
a) ho c ặ
b) ho c ặ
c)
ặ ặ ho c ho c
ả ả d) suy ra và x y ra hai kh năng:
ượ không tìm đ c x nguyên nào.
ậ ỏ (th a mãn ). V y
Bài 4.
a)
V y ậ
b)
V y ậ